1 什么是堆
堆的定义
把这个关系 和完全二叉树对应起来,如下图,如果 下标 从1 开始, 这 任意一个节点 i 2*i +1 2*i +2
对于小标从 i ==1 下标从0开始i ==0 的情况
来看下 下面 是 不是堆 ?
左面 是 小顶堆 ; 右面是 大顶堆
看看下面的图形
左边 3 6 7 不满足 大顶堆的定义, 中间 大顶堆 右面 是 大顶堆
2 堆的存储的结构
图1 为 实际 存储结构 , 图2 右面 放在 完全二叉树中的逻辑结构。
3 如何建立 大顶堆
用上面的结构为例 进行图解
此时建立 了 大顶堆, 将 第0 个元素的 待排序列中的最后一个位置互换位置。 之后对 0 ---> 12 进行 最大堆调整 即可,
直到i==0 时候, 待排 序列 就全部完成, 此时 arr[] 排成的 升序啦。。
4 开始 调整堆
同理 一直这样调整 堆 把调整成 大顶堆, 之后将堆顶的元素和待排序列的最后的一个元素 互换值,之后 带排序序列减1 , 已排序列 加1 。
最后 i ==0 ,此时就剩一个 待排序列 ,也就完成了所有的排序。
5 堆排序的过程
堆排序的过程是:(1)建立一个堆array[0..n-1]。(2)把堆首(最大值)和堆尾互换。(3)把堆的尺寸缩小1,然后调整堆,目的构成新的堆。(4)重复步骤2,直到堆的尺寸为1,排序完成。
6 看一下 代码实现:
#include <stdio.h>
/* 交换元素 */
void swap (int array[], int i, int j){
int temp = array[i];
array[i] = array[j];
array[j] = temp;
}
void printAaray(int array[] ,int len){
for(int i=0; i < len; i++){
printf("%d ", array[i]);
}
printf("\n");
}
/* 调整堆 */
void heap_ajust(int arr[], int start, int end) {
//建立父节点下标和子节点下标
int dad = start;
int son = dad * 2 + 1;
while (son <= end) { //
if (son + 1 <= end && arr[son] < arr[son + 1]) //先比较两個子节点大小,选择最大的
son++;
if (arr[dad] > arr[son]) //如果父节点大于子节点代表调整完毕,直接跳出函数
return;
else { //否则交换父子內容再继续子节点和孙节点比较
swap(arr,dad,son);
dad = son;
son = dad * 2 + 1;
}
}
}
/* 堆排序 */
void heap_sort(int arr[], int len) {
int i;
//初始化堆,i从最后一個父节点开始调整
// 建立最大堆
for (i = len / 2 - 1; i >= 0; i--) {
heap_ajust(arr, i, len - 1);
}
//先将第一個元素和已排好元素前一位做交换,再从新调整,直到排序完毕
for (i = len - 1; i > 0; --i) {
swap(arr,0,i);
heap_ajust(arr, 0, i-1);
}
}
int main(int argc, char const *argv[]) {
int arr[]={1,34,6,21,98,31,7,4,36,47,39,45,5,2};
int length = sizeof(arr) / sizeof(int);
/* sort */
heap_sort(arr, length);
/* print Array */
printAaray(arr,length);
return 0;
}
7总结
堆排序 效率 ,我这里就不分析了 ,时间效率,nlogn , 是一个不稳定的算法。
参考资料:
分享快乐,留住感动。 2017/10/23 21:57:13 ---biaoge