第6章 HTTP头部(2) End-to-end、Hop-by-hop

  • End-to-end 端到端头部
    此类头部字段会转发给 请求/响应 的最终接收目标。
    必须保存在由缓存生成的响应头部。
    必须被转发。
  • Hop-by-hop 逐跳首部
    此类头部字段只对单次转发有效。会因为转发给缓存/代理服务器而失效。
    HTTP 1.1 版本之后,如果要使用Hop-by-hop头部字段则需要提供Connection字段。
    除了一下8个字段为逐跳字段,其余均为端到端字段。
    • Connection
    • Keep-Alive
    • Proxy-Authenticate
    • Proxy-Authenrization
    • Trailer
    • TE
    • Tranfer-Encoding
    • Upgrade
### 无线传感器网络中的DV-Hop定位算法 #### 算法概述 DV-Hop是一种基于距离向量的分布式定位算法,最初由Nieuleseu等人于2001年提出。该算法利用距离矢量传播机制和GPS定位原理,适用于资源受限的无线传感网络环境[^1]。 --- #### 算法原理 DV-Hop的核心思想是通过跳数估计节点间的欧几里得距离,并进一步计算未知节点的位置坐标。具体而言: 1. **锚节点广播阶段** 锚节点(已知位置的节点)以洪泛方式向整个网络发送自己的位置信息以及跳数值(初始为0)。其他节点接收到消息后会更新自身的最小跳数值并继续转发给邻居节点。 2. **平均单跳距离估算** 每个锚节点根据与其他锚节点之间的实际地理距离及其对应的跳数差值,计算出每跳的距离均值。最终得到全局范围内的平均单跳距离 \(d_{avg}\)。 3. **未知节点位置解算** 对于每一个未定标的普通节点来说,它能够获取到至少三个不同锚点处所记录下的最短路径长度(即跳数),再乘上之前求出来的单位跳跃步长近似值得到粗略直线间距;最后借助三边测量方法完成二维平面坐标的解析运算过程。 --- #### Matlab实现代码示例 以下是DV-Hop定位算法的一个简化Matlab实现版本: ```matlab % 参数初始化 numNodes = 100; % 节点总数 anchorRatio = 0.2; % 锚节点比例 areaSize = [0, 100]; % 部署区域大小 commRange = 20; % 节点通信半径 % 随机部署节点 nodes = areaSize(1) + (areaSize(2)-areaSize(1)) * rand(numNodes, 2); isAnchor = false(size(nodes,1),1); randpermNums = randperm(numNodes); anchorsIdx = randpermNums(1:round(anchorRatio*numNodes)); isAnchor(anchorsIdx) = true; % 计算邻接矩阵 adjMatrix = squareform(pdist(nodes)); adjMatrix(adjMatrix > commRange | eye(size(adjMatrix))==1) = inf; [~, minHops] = graphshortestpath(digraph(adjMatrix)); % 平均单跳距离计算 for i=1:length(anchorsIdx) for j=i+1:length(anchorsIdx) hopCount(i,j) = abs(minHops(anchorsIdx(i), anchorsIdx(j))); euclideanDist(i,j) = norm(nodes(anchorsIdx(i), :) - nodes(anchorsIdx(j), :)); end end averageHopDistance = mean(euclideanDist(hopCount>0)./hopCount(hopCount>0)); % 未知节点定位 unknownPoses = []; for k=find(~isAnchor)' anchorDistances = averageHopDistance .* minHops(k, anchorsIdx)'; A = zeros(length(anchorsIdx), length(anchorsIdx)+1); b = zeros(length(anchorsIdx),1); for m=1:length(anchorsIdx) A(m,:) = [(nodes(anchorsIdx(m),:)'), -sqrt(sum((nodes(anchorsIdx(m),:)').^2-anchorDistances(m)^2)]; b(m) = dot(A(m,:), nodes(anchorsIdx(m),:)'); end unknownCoord = pinv(A)*b'; unknownPoses = cat(1, unknownPoses, unknownCoord'); end disp('Unknown Nodes Estimated Positions:'); disp(unknownPoses); ``` 上述程序实现了基本的功能框架,包括随机布置节点、构建连通图模型、执行最短路搜索以及运用线性方程组解决目标点座标推断等问题。 --- #### 性能特点分析 - **优点** - 不依赖专门测距设备,降低了成本开销; - 只需少量固定参照物即可覆盖较大规模监测区; - 易扩展性强,适合动态变化场景应用场合。 - **缺点** - 准确度受拓扑结构影响显著,尤其当网络稀疏或者存在障碍物遮挡时误差增大明显; - 单位跃迁尺度评估环节引入额外不确定性因素可能导致整体偏差累积效应加剧恶化情况发生概率较高。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值