
机器学习面试
文章平均质量分 70
抖腿大刘
我很懒,啥都不写
展开
-
《剑指offer》JAVA编程实现
持续更新。。。持。。。续。。。地址: https://github.com/GreenLiuWhy/AimAtOffer更新记录:2017年7月13日 && 版本一 && 加入第二章内容程序说明:下载导入项目即可运行。在我程序最头的注释里有 问题的题目其中的题目出现 proNum_Num 是 proNum 题目的扩展问题。比如 pro15_2 就是面试题15的第1个扩展问题。程序中包含 我自己的解原创 2017-07-13 19:25:03 · 419 阅读 · 0 评论 -
机器学习岗位面试问题汇总 之 集成学习
自己结合网络内容总结,欢迎指正欢迎补充。最新更新:20170626—版本1(只给出问题)总体性问题1.学习器结合可能带来的好处2.模型融合的方法/策略3.常见融合框架的原理;优缺点;融合一定会提升性能么?为什么融合可能会提高预测效果?4.Bagging 和 Boosting 的区别和联系5.为什么说Bagging是减少了方差(variance),而Boosting是减少了偏差(bias)?R F6.原创 2017-06-26 20:05:29 · 2894 阅读 · 0 评论 -
机器学习岗位面试问题汇总 之 SVM
自己结合网络、书本内容总结,欢迎指正欢迎补充。更新日期:20170607—版本11.简述SVM 二分类模型、更严格优化条件—>更好分界线,低维—->高维,间隔最大的分割平面,不太容易过拟合(2个原因),多层感知机(sigmoid核),3种分类,2种求解方法2.SVM的主要特点 (1)非线性映射-理论基础 (2)最大化分类边界-方法核心 (3)支持向量-计算结果 (4)小样本学习方法 (5)最终的原创 2017-06-24 21:59:04 · 4166 阅读 · 0 评论 -
机器学习岗位面试问题汇总 之 线性回归和LR模型
线性回归基本思想:用梯度下降法对最小二乘法行社的误差函数进行优化 几个式子:(1)假设 (2)优化目标 (3)梯度下降法(包括推导+特征缩放的目的) 优缺点:实现简单,但不能拟合非线性数据LR模型概念:分类、事件发生的概率、本质上是线性回归模型(解释为什么) 几个式子:(1)假设 (2)优化目标(推导) (3)梯度下降法(推导) 优点:实现简单,分类时计算量小、速度快、存储资源要求低 缺点原创 2017-06-21 17:16:21 · 5441 阅读 · 0 评论 -
机器学习岗位面试问题汇总 之 深度学习
1.模式识别、机器学习、深度学习的区别与联系 模式识别:过去、程序/机器做智能的事、决策树等 机器学习:热点领域、给数据+学习数据 深度学习:前言领域、强调模型2.早年神经网络被淘汰的原因 耗时、局部最优、竞争对手、over-fitting、参数3.深度学习的实质 及其 与浅层学习的区别 深度学习实质:多隐层+海量数据——>学习有用特征—–>提高分类或预测准确性 区别:(1)DL强调模型原创 2017-06-21 16:31:51 · 4838 阅读 · 1 评论 -
机器学习岗位面试问题汇总 之 总体性问题
自己结合网络内容总结,欢迎指正欢迎补充。最新更新:20170627—版本2(扩充问题,取消简易答案)1.机器学习、模式识别、深度学习的关系2.解释监督学习、非监督学习、半监督学习的关系3.机器学习模型分类 之 监督/非监督4.机器学习模型分类 之 回归/分类/标注5.机器学习模型分类 之 判别模型/生成模型6.生成模型、判别模型的区别?各自的优缺点?7.AUC的本质是什么?AUC有哪些原创 2017-06-05 18:03:05 · 707 阅读 · 0 评论