机器学习岗位面试问题汇总 之 SVM

自己结合网络、书本内容总结,欢迎指正欢迎补充。

更新日期:20170607—版本1

1.简述SVM
二分类模型、更严格优化条件—>更好分界线,低维—->高维,间隔最大的分割平面,不太容易过拟合(2个原因),多层感知机(sigmoid核),3种分类,2种求解方法

2.SVM的主要特点
(1)非线性映射-理论基础 (2)最大化分类边界-方法核心 (3)支持向量-计算结果 (4)小样本学习方法 (5)最终的决策函数只有少量支持向量决定,避免了“维数灾难” (6)少数支持向量决定最终结果—->可“剔除”大量冗余样本+算法简单+具有鲁棒性(体现在3个方面) (7)学习问题可表示为凸优化问题—->全局最小值 (8)可自动通过最大化边界控制模型,但需要用户指定核函数类型和引入松弛变量 (9)适合于小样本,优秀泛化能力(因为结构风险最小) (10)泛化错误率低,分类速度快,结果易解释

3.解释间隔最大化
几何间隔最大—–>充分大的确信度—–>对难分的

4.解释支持向量
线性可分情况下的定义+线性不可分情况下的定义
(1)线性可分SVM对SV的几种等价定义 (2)线性SVM对SV的几种等价定义 (3)比较线性可分SVM的SV的定义和线性SVM对于SV定义之间的区别与联系

5.SVM的推导
见《统计学习方法》或 笔记:函数间隔—>几何间隔—>几何间隔最大化—>函数间隔最大化—>令r^=1—> max 变 min—->拉格朗日函数—->求解对偶问题的3个步骤
(1)线性可分 (2)线性近似可分 (3)线性不可分

6.为什么要引入对偶问题
(1)容易求解 (2)核函数
Note:拉格朗日对偶没有改变最优解,但改变了算法复杂度:原问题—样本维度;对偶问题–样本数量。所以 线性分类&&样本维度<样本数量:原问题求解(liblinear默认); 非线性–升维—一般导致 样本维度>样本数量:对偶问题求解

7.SVM的优缺点
优点:见主要特点
缺点:(1)大规模训练样本(m阶矩阵计算) (2)传统的不适合多分类 (3)对缺失数据、参数、核函数敏感

8.SVM的应用
模式识别领域中的文本识别、中文分类、人脸识别等;工程技术、信息过滤等。

9.如何选择核函数
(1)线性可分 (2)线性不可分(多项式~,高斯~,拉普拉斯~,sigmoid~)

10.RBF核的优点
大小高低都适用。具体来说(1)无穷维,线性核是其特例 (2)与多项式~比,RBF需确定的参数少 (3)某些参数下,与sigmoid~有相似的功能

11.核函数选取与feature、样本之间的关系
(1)fea大≈样本数量:LR or 线性核 (2)fea小,样本数量不大也不小:高斯核 (3)fea大,样本数量多:手工添加特征后转(1)

12.介绍你所知道的几种核函数
多项式~,高斯~,拉普拉斯~,sigmoid~;线性~

13.如何调节惩罚因子
惩罚因子C表示有多重视离群点带来的损失,当所有离群点的松弛变量和一定是,C越大,对目标函数的损失也就越大。
C不是一个变量,是需要参数寻优的常量。

14.如何防止SVM过拟合(提高泛化能力)
松弛变量的平方和?

15.SVM与LR的区别与联系
联系:(1)分类(二分类) (2)可加入正则化项
区别:(1)LR–参数模型;SVM–非参数模型?(2)目标函数:LR—logistical loss;SVM–hinge loss (3)SVM–support vectors;LR–减少较远点的权重 (4)LR–模型简单,好理解,精度低,可能局部最优;SVM–理解、优化复杂,精度高,全局最优,转化为对偶问题—>简化模型和计算 (5)LR可以做的SVM可以做(线性可分),SVM能做的LR不一定能做(线性不可分)

16.对偶问题的求解—SMO算法
见《统计学习方法》

参考:
《统计学习方法》,李航

  • 1
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值