关闭

nyoj 139 我排第几 143 第几是谁

358人阅读 评论(0) 收藏 举报
分类:

我排第几个

时间限制:1000 ms  |           内存限制:65535 KB
难度:3
描述

现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的?

 

输入
第一行有一个整数n(0<n<=10000);
随后有n行,每行是一个排列;
输出
输出一个整数m,占一行,m表示排列是第几位;
样例输入

2

abcdefghijkl

hgebkflacdji

样例输出

1

302715242

解析:

这道题是给出一串字母,求按字典序中的排序。

算法:康托展开

康托展开就是一种特殊的哈希函数,它的使用范围是对于n个数的排列进行状态的压缩和存储,是一个全排列到一个自然数双射,常用于构建哈希表时的空间压缩。 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的。

以下称第x个全排列是都是指由小到大的顺序。

X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!

其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。

a[i]的意义参见举例中的解释部分

举例:

例如,3 5 7 4 1 2 9 6 8 展开为 98884。因为X=2*8!+3*7!+4*6!+2*5!+0*4!+0*3!+2*2!+0*1!+0*0!=98884.

解释:

排列的第一位是3,比3小的数有两个,以这样的数开始的排列有8!个,因此第一项为2*8!

排列的第二位是5,比5小的数有1、2、3、4,由于3已经出现,因此共有3个比5小的数,这样的排列有7!个,因此第二项为3*7!

以此类推,直至0*0!

用途:

显然,n位(0~n-1)全排列后,其康托展开唯一且最大约为n!,因此可以由更小的空间来储存这些排列。由公式可将X逆推出对应的全排列。

康托展开的逆运算

既然康托展开是一个双射,那么一定可以通过康托展开值求出原排列,即可以求出n的全排列中第x大排列。

如n=5,x=96时:

首先用96-1得到95,说明x之前有95个排列.(将此数本身减去!)
用95去除4! 得到3余23,说明有3个数比第1位小,所以第一位是4.
用23去除3! 得到3余5,说明有3个数比第2位小,所以是4,但是4已出现过,因此是5.
用5去除2!得到2余1,类似地,这一位是3.
用1去除1!得到1余0,这一位是2.
最后一位只能是1.
所以这个数是45321.
 

139题

代码:

#include<stdio.h>
#include<string.h>
int main()
{
    int t,i,j,s;
    long long num,a[14];
    char b[14];
    memset(a,0,sizeof(a));
    a[1]=1;
    a[2]=2;
    for(i=3;i<=12;i++)
    a[i]=a[i-1]*i;
    scanf("%d",&t);
    while(t--)
    {
        memset(b,0,sizeof(b));
        scanf("%s",b);
        num=0;
        for(i=0;i<12;i++)
        {
            s=0;
            for(j=i+1;j<12;j++)
            if(b[i]>b[j])
            s++;
            num=num+s*a[11-i];
        }
        printf("%lld\n",++num);
    }
}

 143题

代码:

#include<stdio.h>
#include<string.h>
int main()
{
    int n,m,i,j,t,a[13],b[13],c[13];
    b[0]=1;
    b[1]=1;
    for(i=2;i<12;i++)
    b[i]=i*b[i-1];
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d",&m);
        for(i=0;i<12;i++)
        a[i]=i;
        m--;
        for(i=0;i<12;i++)
        {
            t=m/(b[11-i]);
            c[i]=a[t];
            for(j=t;j<11;j++)
            a[j]=a[j+1];
            m-=t*b[11-i];
        }
        for(i=0;i<12;i++)
        printf("%c",c[i]+97);
        printf("\n");
    }
    return 0;
}

 

1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:8697次
    • 积分:222
    • 等级:
    • 排名:千里之外
    • 原创:12篇
    • 转载:8篇
    • 译文:1篇
    • 评论:1条
    文章分类
    文章存档
    最新评论