nyoj 139 我排第几 143 第几是谁

原创 2013年12月02日 19:12:24

我排第几个

时间限制:1000 ms  |           内存限制:65535 KB
难度:3
描述

现在有"abcdefghijkl”12个字符,将其所有的排列中按字典序排列,给出任意一种排列,说出这个排列在所有的排列中是第几小的?

 

输入
第一行有一个整数n(0<n<=10000);
随后有n行,每行是一个排列;
输出
输出一个整数m,占一行,m表示排列是第几位;
样例输入

2

abcdefghijkl

hgebkflacdji

样例输出

1

302715242

解析:

这道题是给出一串字母,求按字典序中的排序。

算法:康托展开

康托展开就是一种特殊的哈希函数,它的使用范围是对于n个数的排列进行状态的压缩和存储,是一个全排列到一个自然数双射,常用于构建哈希表时的空间压缩。 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的。

以下称第x个全排列是都是指由小到大的顺序。

X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0!

其中,a[i]为整数,并且0<=a[i]<i,1<=i<=n。

a[i]的意义参见举例中的解释部分

举例:

例如,3 5 7 4 1 2 9 6 8 展开为 98884。因为X=2*8!+3*7!+4*6!+2*5!+0*4!+0*3!+2*2!+0*1!+0*0!=98884.

解释:

排列的第一位是3,比3小的数有两个,以这样的数开始的排列有8!个,因此第一项为2*8!

排列的第二位是5,比5小的数有1、2、3、4,由于3已经出现,因此共有3个比5小的数,这样的排列有7!个,因此第二项为3*7!

以此类推,直至0*0!

用途:

显然,n位(0~n-1)全排列后,其康托展开唯一且最大约为n!,因此可以由更小的空间来储存这些排列。由公式可将X逆推出对应的全排列。

康托展开的逆运算

既然康托展开是一个双射,那么一定可以通过康托展开值求出原排列,即可以求出n的全排列中第x大排列。

如n=5,x=96时:

首先用96-1得到95,说明x之前有95个排列.(将此数本身减去!)
用95去除4! 得到3余23,说明有3个数比第1位小,所以第一位是4.
用23去除3! 得到3余5,说明有3个数比第2位小,所以是4,但是4已出现过,因此是5.
用5去除2!得到2余1,类似地,这一位是3.
用1去除1!得到1余0,这一位是2.
最后一位只能是1.
所以这个数是45321.
 

139题

代码:

#include<stdio.h>
#include<string.h>
int main()
{
    int t,i,j,s;
    long long num,a[14];
    char b[14];
    memset(a,0,sizeof(a));
    a[1]=1;
    a[2]=2;
    for(i=3;i<=12;i++)
    a[i]=a[i-1]*i;
    scanf("%d",&t);
    while(t--)
    {
        memset(b,0,sizeof(b));
        scanf("%s",b);
        num=0;
        for(i=0;i<12;i++)
        {
            s=0;
            for(j=i+1;j<12;j++)
            if(b[i]>b[j])
            s++;
            num=num+s*a[11-i];
        }
        printf("%lld\n",++num);
    }
}

 143题

代码:

#include<stdio.h>
#include<string.h>
int main()
{
    int n,m,i,j,t,a[13],b[13],c[13];
    b[0]=1;
    b[1]=1;
    for(i=2;i<12;i++)
    b[i]=i*b[i-1];
    scanf("%d",&n);
    while(n--)
    {
        scanf("%d",&m);
        for(i=0;i<12;i++)
        a[i]=i;
        m--;
        for(i=0;i<12;i++)
        {
            t=m/(b[11-i]);
            c[i]=a[t];
            for(j=t;j<11;j++)
            a[j]=a[j+1];
            m-=t*b[11-i];
        }
        for(i=0;i<12;i++)
        printf("%c",c[i]+97);
        printf("\n");
    }
    return 0;
}

 

NYOJ - 143 第几是谁? & NYOJ - 149 我排第几个

康拓展开模板
  • sinat_29278271
  • sinat_29278271
  • 2016年05月02日 15:13
  • 223

nyoj 143 第几是谁?

题目来源:http://acm.nyist.net/JudgeOnline/problem.php?pid=143 参考:
  • Hearthougan
  • Hearthougan
  • 2014年04月30日 18:08
  • 455

NYOJ 143 第几是谁?

第几是谁? 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一种排列,...
  • u012804490
  • u012804490
  • 2014年05月19日 08:16
  • 585

NYOJ 题目143 第几是谁?(康拓展开)

 第几是谁? 时间限制:3000 ms  |  内存限制:65535 KB 难度:3 描述现在有"abcdefghijkl”12个字符,将其按字典序排列,如果给出任意一...
  • yu_ch_sh
  • yu_ch_sh
  • 2014年09月22日 18:03
  • 474

NYOJ 139 我排第几个 和 NYOJ 143 第几是谁? 【康拓展开和逆康拓展开】

原题链接:点击打开链接 康拓展开:      链接:点击打开链接   和  点击打开链接 逆康拓展开:     链接:点击打开链接  和  点击打开链接 应该可以看懂康拓了吧。。。 ...
  • PIAOYI0208
  • PIAOYI0208
  • 2012年03月13日 10:38
  • 3622

第几是谁(NYOJ)

#include #include long int fac[13] = {1,1}; char s[12]; int a[12]; void find(int len, int n); int ...
  • u012701056
  • u012701056
  • 2013年12月01日 10:33
  • 416

nyoj 143第几是谁?和 nyoj 139 我排第几个

康拓展开和康拓逆展开  把一个整数X展开成如下形式:   X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[2]*1!+a[1]*0! ...
  • H_R_D_127
  • H_R_D_127
  • 2012年03月26日 09:40
  • 1303

我排第几 第几是谁? 康托展开与逆康托展开

康拓展开:      链接:点击打开链接   和  点击打开链接 康托展开的逆运算 既然康托展开是一个双射,那么一定可以通过康托展开值求出原排列,即可以求出n的全排列中第x大排列。 ...
  • amazingcode
  • amazingcode
  • 2016年09月07日 09:14
  • 338

NYIST 143 第几是谁?(逆康托展开)

康拓展开见:http://blog.csdn.net/vikotse/article/details/12795759 维基百科介绍见:http://zh.wikipedia.org/zh/%E5%B...
  • vikotse
  • vikotse
  • 2013年10月16日 22:53
  • 427

南阳理工ACM 139 我排第几

#include #include int main() {  int n,m,i,j;  char str[13];  int a[13],b[12];  scanf("%d",&n)...
  • u011550160
  • u011550160
  • 2013年08月07日 21:05
  • 385
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:nyoj 139 我排第几 143 第几是谁
举报原因:
原因补充:

(最多只允许输入30个字)