关闭

hdu1054 Strategic Game---二分图匹配

792人阅读 评论(0) 收藏 举报
分类:

此题构建了一个二分图 x 和 y 均为全部点的集合

res=hungary () 为最大匹配数(边数)

但此题构建的二分图x=y 所以一半是重复的 最后要除2


匈牙利算法模板。。

/* **************************************************************************
//二分图匹配(匈牙利算法的DFS实现)
//初始化:g[][]两边顶点的划分情况
//建立g[i][j]表示i->j的有向边就可以了,是左边向右边的匹配

linker[i]=j 记录 i 点连接了 j 点 若没有相连的点 则-1

//g没有边相连则初始化为0
//uN是匹配左边的顶点数,vN是匹配右边的顶点数
//调用:res=hungary();输出最大匹配数
//优点:适用于稠密图,DFS找增广路,实现简洁易于理解
//时间复杂度:O(VE)
//***************************************************************************/

——kuangbin


#include <iostream>
#include <cstring>
#include <string>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
#include <map>
using namespace std;

int uN,n,m,linker[1505];
bool used[1505];
vector<int> mp[1505];

bool dfs(int u)
{
    int i;
    int l=mp[u].size();
    for(i=0;i<l;i++)
      if(!used[mp[u][i]])
      {
          used[mp[u][i]]=true;
          if(linker[mp[u][i]]==-1||dfs(linker[mp[u][i]]))//若该点没有点相连 则标记该点所连的点 返回
          {                                              //若该点有相连的点 则dfs该点 看是否存在增广路
              linker[mp[u][i]]=u;
              return true;
          }
      }
    return false;
}

int hungary()
{
    int res=0;
    int u;
    memset(linker,-1,sizeof(linker));
    for(u=0;u<uN;u++)//对x集里面每一个顶点dfs
    {
        memset(used,0,sizeof(used));
        if(dfs(u)) res++;//若存在增广路(包括他所连接的点没有匹配过)则res++
    }
    return res;
}

int main()
{
    int u,v,i,j;
    while(~scanf("%d",&n))
    {
        for(i=0;i<1505;i++)
            mp[i].clear();
        for(i=0;i<n;i++)
        {
            scanf("%d:(%d)",&u,&m);
            for(j=0;j<m;j++)
            {
                scanf("%d",&v);
                mp[u].push_back(v);
                mp[v].push_back(u);
            }
        }
        uN=n;
        printf("%d\n",hungary()/2);
    }
    return 0;
}


0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:203102次
    • 积分:4657
    • 等级:
    • 排名:第6284名
    • 原创:255篇
    • 转载:49篇
    • 译文:0篇
    • 评论:42条
    我的QQ

    361323806

    新浪微博 @谭瑶谭瑶

    最新评论