hdu1845 Jimmy’s Assignment --- 完备匹配

本文介绍了如何在无向、每个节点度数为3且边双连通的图中找到最大匹配。由于图的特性,它满足完备匹配的条件,即为三次正则图且无桥。因此,这样的图一定存在完备匹配,答案为节点数的一半。可以使用经典算法求解最大匹配问题,但针对点数较大的情况需考虑优化以避免超时。
摘要由CSDN通过智能技术生成

题意:

要求在一个特殊的图上找最大匹配,该图特点是:无向图,每个节点度数为3,是一个边双连通分量(the graph is 2-edge-connected (that is, at least 2 edges need to be removed in order to make the graph disconnected) 这一点是这样理解的把。。)

思路:

一般想法就直接建图求最大匹配,点的范围是5000,不优化可能超时,下面代码是890ms过的。


另一种思路:

完备匹配的条件:

1. G是K(K>0)次正则二分图

2.G是无桥的三次正则图

3.G在去掉任意一个顶点子集S后,其子图中含顶点数为奇数的连通分支数不大于|S|

具有以上三个特征的图一定有完备匹配。且其中第三点是完备匹配的充要条件。

据此可得,题目中所给的图一定是完备匹配,答案是n/2。


#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
const int maxn=5010;
using namespace std;

int main()
{
    int n,a,b,t;
    scanf("%d",&t);
    while(t-
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值