题意:
要求在一个特殊的图上找最大匹配,该图特点是:无向图,每个节点度数为3,是一个边双连通分量(the graph is 2-edge-connected (that is, at least 2 edges need to be removed in order to make the graph disconnected) 这一点是这样理解的把。。)
思路:
一般想法就直接建图求最大匹配,点的范围是5000,不优化可能超时,下面代码是890ms过的。
另一种思路:
完备匹配的条件:
1. G是K(K>0)次正则二分图
2.G是无桥的三次正则图
3.G在去掉任意一个顶点子集S后,其子图中含顶点数为奇数的连通分支数不大于|S|
具有以上三个特征的图一定有完备匹配。且其中第三点是完备匹配的充要条件。
据此可得,题目中所给的图一定是完备匹配,答案是n/2。
#include<cstdio>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<vector>
#include<queue>
#include<map>
const int maxn=5010;
using namespace std;
int main()
{
int n,a,b,t;
scanf("%d",&t);
while(t-