自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

  • 博客(387)
  • 资源 (5)
  • 收藏
  • 关注

原创 《大模型AIGC系列课程》大纲

本文系统介绍了大语言模型(LLM)及其相关技术,涵盖基础理论、应用实践和前沿进展。从LLM架构、文本向量化等基础概念讲起,重点解析了RAG(检索增强生成)技术原理与Agent应用实践,包括知识图谱构建、NLP2SQL生成等具体场景。在模型训练方面,详细介绍了微调方法、领域适配和强化学习优化策略。此外,还探讨了多模态扩展,包括视觉理解、图像生成和音频处理等技术原理与应用案例。全文通过大量实践案例(如中医AI大脑、政务文档解析等)展示了LLM在各领域的创新应用,为读者提供了从基础到进阶的全面技术指南。

2023-09-05 11:46:30 3736 1

原创 【Dify(v2.x) 核心源码深入解析】Schema系统如何让AI应用配置像乐高一样灵活?

【摘要】本文深入解析Dify平台的Schema系统架构,揭示其如何通过JSON Schema实现灵活配置管理。核心内容包含:1)Schema定义层的契约式设计,通过版本化JSON文件规范数据结构;2)动态注册表机制实现多版本共存与元数据管理;3)智能解析器自动处理$ref引用,确保验证可靠性。该系统支持零代码扩展,典型应用场景包括文件格式验证和问答结构定制,其配置驱动架构相比传统硬编码方式显著提升灵活性与兼容性。

2025-09-11 13:31:06 6

原创 【Dify(v2.x) 核心源码深入解析】Repository模式如何优雅解决数据持久化难题?

摘要: 本文深入解析Dify框架如何运用Repository设计模式实现高效数据持久化。通过定义标准接口契约(WorkflowExecutionRepository),结合工厂模式动态注入实现(如SQLAlchemy),完美解耦业务逻辑与数据存储细节。关键设计亮点包括:多租户隔离(基于tenant_id)、三级缓存优化、事务安全管理,以及领域模型与数据库模型的高效转换。这种架构不仅提升代码可维护性,还能灵活适配不同存储方案,为AI应用开发提供稳健的数据层支撑。(150字)

2025-09-09 14:33:22 26

原创 【Dify(v1.x) 核心源码深入解析】RAG双引擎:检索+分割如何让AI知识库智商爆表!

文章摘要: Dify的AI知识库处理流程分为两大核心模块:分割模块将文档智能切分为语义完整的小块,支持字符级、Token级和递归式分割策略;检索模块则通过语义搜索、全文搜索和混合搜索精准定位答案,结合智能路由系统自动选择最优知识库。两大模块协同工作,使Dify能高效处理复杂查询,成为AI领域的“最强大脑”。

2025-09-03 15:02:48 41

原创 【Dify(v1.x) 核心源码深入解析】RAG黑科技:一文吃透Models与Rerank模块的底层逻辑

《深入解析Dify RAG:从向量化到精排序的智能优化》一文深度剖析了Dify开源项目中RAG(检索增强生成)技术的两大核心模块。Models模块通过Embedding模型将文档转化为AI可理解的向量,并利用Document模型实现结构化存储,其创新的缓存机制可大幅提升处理效率。Rerank模块则采用双引擎策略(模型重排序+简单排序),通过去重处理、专业模型调用和结果重包装三步骤,从海量初检结果中筛选出最优答案。文章通过清晰的Mermaid流程图和实战代码示例,揭示了AI知识库精准应答的核心技术原理,为开发

2025-09-02 16:56:31 45

原创 【Dify(v1.x) 核心源码深入解析】RAG模块核心揭秘:Index Processor如何让你的AI知识库起飞?

《Dify的Index Processor:打造高效AI知识库的核心引擎》 本文深入解析Dify AI知识库的核心模块Index Processor,揭秘其如何通过智能文档处理技术解决AI知识库"智障"问题。Index Processor采用工厂模式+策略模式架构,提供三大索引策略:Paragraph Index按段落分割,QA Index自动生成问答对,Parent-Child Index构建层次化索引。文章详细剖析了各策略的技术实现与适用场景,并分享了多线程加速等性能优化技巧。通过对

2025-09-02 16:14:28 33

原创 【Dify(v1.x) 核心源码深入解析】揭秘AI应用背后的数据魔法:深入解析RAG模块的extractor子模块

摘要(150字): Dify平台中的extractor子模块是RAG(检索增强生成)流程的关键组件,负责从多种数据源(如PDF、Excel、网页、Notion等)提取结构化文本。其采用工厂模式设计,核心类ExtractProcessor根据数据类型自动选择对应的提取器(如TextExtractor处理文本编码问题,PdfExtractor实现PDF分页解析与缓存)。通过统一输出Document对象格式,extractor为后续AI处理提供标准化输入,是构建知识型AI应用的"数据预处理中枢&quot

2025-08-28 11:47:07 47

原创 【Dify(v1.x) 核心源码深入解析】RAG的“数据心脏“:datasource模块深度解析

本文深入解析了Dify RAG架构中的核心数据处理引擎datasource模块。该模块作为RAG系统的"数据心脏",主要承担数据接入、处理和管理的三大核心任务。文章详细剖析了其核心类结构(BaseVector、AbstractVectorFactory等)、工作流程(数据加载和检索)以及关键代码实现(向量存储创建和搜索),并对比了多种向量数据库的特点。同时揭秘了混合搜索、智能数据更新等高级特性,以及批量处理、向量缓存等性能优化技巧。该模块通过精心设计的抽象层,为各类向量数据库提供了统一接

2025-08-27 15:56:05 49

原创 【Dify(v1.x) 核心源码深入解析】RAG 模块:Embedding、DocStore 与数据后处理三大黑科技

《大模型AIGC专栏深入解析Dify RAG核心技术》摘要: Dify平台的RAG技术通过三大核心模块实现高效智能检索:1)Embedding引擎采用双重缓存机制,结合数据库和Redis缓存,显著提升文本向量化效率;2)文档存储系统运用分层设计,支持文档主片段和子片段存储,实现精细化内容管理;3)数据后处理器通过重排和奇偶位置重排算法优化检索结果质量。该技术栈通过缓存优化、批量处理和向量归一化等策略,使检索速度提升10倍,吞吐量提高5倍,为LLM应用开发提供强大支持。

2025-08-25 15:05:30 43

原创 【Dify(v1.x) 核心源码深入解析】prompt 模块

摘要(145字): 本文深入解析Dify框架的Prompt模块设计,涵盖模板解析、多模态消息处理和转换引擎三大核心。通过正则表达式实现变量提取与替换,支持嵌套变量和特殊语法;采用类体系处理文本/图像/音频等多模态输入;针对聊天和补全模式分别优化提示生成流程,提供企业级AI应用开发支持。关键技术包括模板解析器、PromptMessage转换和模式适配引擎,为开发者构建高效Prompt工程提供系统化解决方案。

2025-08-21 16:09:51 109

原创 深入解析 Qwen3 GSPO:一种稳定高效的大语言模型强化学习算法

本文提出GSPO算法,通过序列级重要性采样和长度归一化,解决了GRPO在语言模型强化学习训练中的稳定性问题。GSPO将重要性采样从token级别提升到序列级别,与奖励单位保持一致,显著减少了噪声累积和梯度方差。实验表明,GSPO在训练效率、稳定性方面优于GRPO,特别在处理长序列和混合专家模型时表现突出。该算法已成功应用于Qwen3模型的训练,提升了数学推理、编程和长文本生成能力,简化了RL训练基础设施设计,为大型语言模型强化学习提供了更稳健高效的解决方案。

2025-08-18 17:13:07 130

原创 【Dify(v1.x) 核心源码深入解析】plugin 模块

摘要: Dify插件系统通过模块化架构实现AI应用的扩展能力,支持工具、模型等功能的灵活集成。系统包含插件管理器、工具引擎等核心组件,采用声明文件定义插件元数据(名称、资源需求等)。安装过程由PluginInstaller管理,支持上传包或标识符安装,包含完整状态机机制。工具调用通过PluginToolBackwardsInvocation实现,提供参数传递和消息转换功能。模型插件则通过标准接口集成,开发者可扩展AI能力。该系统通过解耦设计、安全沙箱等机制,为Dify平台提供强大的可扩展性。

2025-08-12 16:19:56 97

原创 图结构知识构造方法详解 ——面向垂直领域的高效知识库构建方案

本文提出了一种基于图结构的知识构造方法,旨在解决当前大语言模型在垂直领域应用中的知识孤岛问题。该方法通过四层处理引擎设计,包含表格智能重构、网页深度提取、文本动态划分和相似问挖掘等关键技术突破。实验表明,相比传统方案,该方法在医疗、金融等领域的知识召回完整度提升33.8%-67.3%。文章还提供了快速集成示例和参数调优指南,帮助开发者快速应用该技术。

2025-07-31 16:13:05 76

原创 Chain of Draft:以极简推理加速大模型思考​​——原理、代码实现与性能突破

摘要: Chain of Draft (CoD) 是一种新型推理范式,通过极简草稿(≤5词/步)替代传统Chain-of-Thought的冗余计算,显著降低LLM推理成本。实验显示,CoD在GSM8K等任务中保持90%+准确率的同时,平均减少85% Token消耗和65%延迟。其核心创新在于:1)硬约束中间态长度;2)仅保留关键计算节点;3)与工程师草稿思维对齐。代码实现包含动态提示组合、多后端LLM适配等模块,支持通过CLI快速验证不同任务/模型的性能提升。该技术为高成本大模型推理提供了轻量化解决方案。

2025-07-27 16:51:56 81

原创 KTO原理与代码实现全解析:人类行为理论驱动的大模型对齐

本文介绍了一种基于前景理论的大模型对齐方法KTO(Kahneman-Tversky Optimization),其核心是通过行为经济学的价值函数设计来优化人类感知效用。KTO创新性地将损失厌恶系数(λ=2.25)和风险敏感系数(α=0.88)融入奖励函数,实现分段优化:收益区域采用凹函数(边际递减),损失区域采用凸函数(放大损失厌恶)。关键技术包括滑动窗口KL散度估计参考点z0,通过错位配对和流式更新确保数值稳定性。完整方案包含数据预处理、模型训练和参考点动态估计等模块,为AIGC对齐提供了新思路。

2025-07-24 19:02:20 59

原创 基于大模型的动态用户画像采集系统设计与实现

摘要: 本文提出了一种基于大模型的动态参数采集系统,解决传统数据采集中的隐私风险、交互僵化和数据处理难题。系统通过参数存储表(MongoDB)与对话管理模块(动态Prompt)协同工作,在自然对话中实现结构化参数抽取,支持医疗预问诊等场景。核心创新包括动态参数路由、上下文感知的Prompt构建和下游任务扩展能力,并通过Redis缓存和批量处理优化性能。未来将扩展多模态参数采集和联邦学习架构,推动显性表达数据化的技术演进。

2025-07-23 11:30:49 96

原创 基于大语言模型的虚拟人视频全自动生成技术解析

文章摘要: 本文介绍了基于大模型的虚拟人视频生成技术,该系统通过"对话生成-知识蒸馏-跨模态合成"创新架构,将制作成本降至传统方案的0.3%。核心技术包括:1)百亿级大模型对话生成系统;2)知识蒸馏训练实现模型轻量化;3)多模态合成引擎实现4K视频实时渲染。测试数据显示,该方案使视频制作耗时从8.5小时缩短至4.2分钟,成本降低99.7%,同时支持48种语言。目前已在教育、电商等领域落地应用,未来有望实现电影级AI视频生成,但仍需解决实时渲染延迟等挑战。

2025-07-16 10:25:58 125

原创 自然语言指令驱动的工业机器人协同学习系统:大语言模型如何重塑智能体协作范式

本文提出一种突破性多智能体系统方案,通过“环境状态符号化建模+技能API原子化设计”双引擎架构,解决传统系统在语义理解、动态协同和自适应学习方面的瓶颈。核心技术包括运动语义解析器(自然语言→动作模板)、函数编码映射器(生成可执行代码)及自主检索增强器(失败自修复)。实测显示,该系统在模糊指令理解准确率(提升84%)、新场景适应速度(加快300倍)和多机协同效率(吞吐量提升40%)上实现显著突破,为智能制造等领域提供新一代智能体解决方案。

2025-07-15 10:49:42 115

原创 【Dify(v1.x) 核心源码深入解析】ops 模块

摘要:Dify的Ops模块作为可观测性核心子系统,通过全链路追踪、多供应商适配、异步处理和数据加密等机制,实现对AI应用运行数据的统一管理。其架构包含数据建模、供应商适配、安全加密和异步处理四大核心模块,支持LangSmith、Weave等10+供应商的无缝集成。关键技术点包括:1)7类追踪实体抽象;2)适配器模式实现供应商扩展;3)租户级AES加密;4)队列化异步处理机制。该模块通过标准化接口和批量化处理,在保证性能的同时满足企业级安全合规要求。

2025-07-14 13:37:57 76

原创 【Dify(v1.x) 核心源码深入解析】mcp 模块

本文深入解析了Dify平台中的MCP(Model Context Protocol)模块架构与实现。MCP作为连接大模型与工具服务的标准化协议,解决了工具发现、安全调用和结果整合三大核心问题。文章详细剖析了MCP的核心组件架构、Agent调用工具的完整工作流程(包括工具发现、参数解析和结果整合三个阶段),并通过代码示例展示了MCP客户端初始化、工具调用核心流程和服务端工具执行的关键实现。此外,还介绍了平台的OAuth 2.0认证流程与安全机制,为开发者理解大模型与工具集成提供了全面的技术参考。

2025-07-11 11:46:53 213

原创 突破政务文档理解瓶颈:基于多模态大模型的智能解析系统详解

多模态融合:GOT-OCR2.0视觉模型与LLM的深度耦合政务先验知识注入:红头/公章/文号等专项优化双Agent验证架构:确保关键信息抽取的可靠性。

2025-07-05 15:05:58 155

原创 基于大模型与知识图谱的对话引导意图澄清系统技术解析

本文提出了一种基于知识图谱与大语言模型的意图澄清系统,旨在解决传统RAG模型在跨文档推理和主动澄清方面的不足。系统通过知识图谱驱动的多跳推理机制和链式思维引导的对话流程,实现了动态信息补全和意图澄清。核心创新包括:1)知识图谱构建与节点选择算法;2)标签探索策略与原子事实提取方法;3)主动澄清引擎的工作流程。实验表明,该系统能有效提升复杂查询的准确率,在医疗、金融等领域实现精准交互。关键代码展示了节点选择、标签匹配和事实提取等核心组件的实现细节。

2025-07-04 14:22:29 176

原创 检索增强的大模型 NLP2SQL 生成

组件功能在 NLP2SQL 中的应用检索器根据输入查找相关上下文从知识库中查找相关DDL、文档和SQL示例生成器基于上下文生成响应根据检索结果生成准确SQL语句知识库存储结构化信息包含数据库模式、业务术语和查询示例# 转换消息格式# 调用自定义API。

2025-06-07 10:51:53 151

原创 检索增强的大模型工具调用:语义驱动的精准API选择技术

在大型语言模型(LLM)应用中,工具调用能力已成为连接AI与真实世界的桥梁。然而,传统方法存在工具选择不准确、参数匹配错误等问题。本文将深入探讨检索增强工具选择器(Retrieval-Augmented Tool Selector) 如何通过语义嵌入技术解决这些挑战。

2025-06-03 17:12:08 853

原创 深入解读Qwen3技术报告(六):Qwen3性能评估

Qwen3性能评估框架概览 Qwen3采用多维度评估体系,涵盖基础能力、专业领域、多语言支持、指令执行、安全性和实际应用六大维度。评估方法结合标准化基准测试(如MMLU、GSM8K)、自动化指标分析和人类专家评估,并与主流模型(Llama-3、GPT-4等)进行横向对比。该框架通过量化指标和质性分析,全面衡量模型的语言理解、专业问题解决及安全合规等核心能力,为AI模型评估提供系统化方法论。评估结果展现Qwen3在语言处理和专业任务中的综合性能表现。

2025-05-26 13:53:09 414

原创 深入解读Qwen3技术报告(五):后训练对齐

摘要: 本章解析了Qwen3大模型的后训练对齐技术,通过多阶段框架(监督微调、偏好对齐、安全对齐)实现三大目标:有用性、安全性和诚实性。监督微调阶段使用百万级高质量指令-回答对数据,覆盖119种语言和多样化任务类型;偏好对齐通过强化学习优化人类偏好;安全对齐专门训练模型拒绝有害请求。代码示例展示了分阶段对齐流程,强调各环节的协同作用与目标平衡(如安全性与有用性的权衡),最终将基础模型转化为符合人类价值观的AI助手。

2025-05-26 11:04:29 482

原创 深入解读Qwen3技术报告(四):Qwen3的预训练之旅

Qwen3的预训练过程通过大规模、多样化的数据构建和优化,显著提升了模型的基础能力和知识储备。与Qwen2.5相比,Qwen3的预训练数据规模翻倍,支持语言数量增加至119种,领域覆盖更加广泛,包括编程、STEM、推理任务、书籍、多语言文本和合成数据等。团队创新性地利用多模态模型从PDF文档中提取高质量文本,并通过合成数据生成策略,利用现有模型生成特定领域的内容,进一步丰富了数据来源。这些策略为Qwen3提供了坚实的知识基础和语言理解能力,确保了其卓越的性能表现。

2025-05-23 13:15:45 330

原创 深入解读Qwen3技术报告(三):深入剖析Qwen3模型架构

本文深入剖析了Qwen3模型的架构设计,重点介绍了其基础组件和创新点。Qwen3基于Transformer解码器,采用了层前归一化、分组查询注意力(GQA)等改进技术,以提升性能和计算效率。GQA通过让多个查询头共享同一组键值头,减少了参数量和计算量,同时保持了模型的表现力。此外,Qwen3的架构设计还考虑了扩展性和训练稳定性,使其在大型语言模型中具有显著优势。通过这些技术细节的解析,读者可以更好地理解Qwen3强大能力背后的架构秘密。

2025-05-22 16:37:06 1869

原创 深入解读Qwen3技术报告(二):Qwen3模型系列全景

Qwen3模型系列是一个从微型到巨型的AI家族,涵盖了从0.6B到235B参数的全系列模型,分为密集模型和混合专家模型(MoE)两大类。密集模型系列包括从Qwen3-0.6B到Qwen3-32B的多个模型,适用于从移动设备到高性能服务器的各种场景。MoE模型系列则通过稀疏激活的架构,在保持计算量稳定的同时大幅增加参数量,适用于需要高性能但资源有限的场景。Qwen3系列的核心技术创新包括思考模式与非思考模式的统一框架、思考预算机制以及高效的MoE架构,这些创新使得Qwen3能够在不同场景下灵活应对复杂任务,提

2025-05-22 13:17:33 314

原创 深入解读 Qwen3 技术报告(一):引言

本文详细解析了Qwen3的核心架构、预训练策略、后训练优化体系及性能评估与工程实践。Qwen3采用混合专家模型(MoE)和优化后的注意力机制,通过三阶段预训练策略构建大规模多语言语料库,并利用长上下文训练技术扩展模型能力。后训练阶段引入双模融合机制和强化学习策略,进一步提升模型性能。评估体系涵盖通用知识、数学推理、代码生成等多维度指标,工程实践中通过动态批处理和量化部署优化推理效率。Qwen3在多项任务中表现出色,尤其在多语言能力和代码生成方面具有显著优势。

2025-05-20 15:26:11 534

原创 【Dify(v1.x) 核心源码深入解析】moderation 模块

Dify 的 moderation 模块是一套功能强大的内容审核系统,旨在对用户输入和模型输出进行敏感内容检测与处理,以确保内容的安全性和合规性。它提供了灵活多样的审核策略,可帮助开发者根据实际需求定制审核流程,广泛应用于各种需要内容管控的应用场景,如聊天机器人、内容生成平台等。

2025-05-19 13:48:04 200

原创 【Dify(v1.x) 核心源码深入解析】model_runtime 模块

Dify 的 model_runtime 模块为人工智能应用开发提供了高效的模型管理与调用解决方案。该模块通过三层架构设计(工厂方法层、供应商层和模型层),实现了模型调用的解耦与扩展性,支持多种模型类型,如大语言模型(LLM)、文本嵌入模型、语音转文本模型等。核心功能包括凭据验证机制和模型调用流程,确保安全性和灵活性。凭据验证分为供应商和模型两级,通过配置规则进行校验;模型调用流程则通过分层设计实现从应用层到模型层的无缝衔接。该模块的设计使得开发者能够轻松扩展支持的模型类型和供应商,同时保持代码的可维护性和

2025-05-14 10:22:02 187

原创 【Dify(v1.x) 核心源码深入解析】llm_generator 和 memory 模块

本篇专栏深入探讨Dify平台的核心模块——llm_generator和memory,解析其技术架构与实现原理。memory模块负责管理对话历史,通过TokenBufferMemory类限制消息数量和tokens数,确保对话连贯性。其核心方法get_history_prompt_messages从数据库中提取消息,转换为提示消息格式,并根据tokens限制进行修剪。llm_generator模块则负责与语言模型交互,生成智能对话内容。通过对这两个模块的详细分析,读者将全面理解Dify平台的智能对话与记忆管理机

2025-05-12 13:16:26 295

原创 【Dify(v1.x) 核心源码深入解析】Helper 模块

Dify 是一个功能强大的 AI 应用开发框架,其 helper 模块为开发者提供了丰富的工具函数和类,以简化开发过程并提高代码的可维护性和可扩展性。本文将深入剖析 Dify 的 helper 模块,涵盖从基础功能到高级实现的各个方面,通过详细的代码解读和示例,帮助读者全面掌握这些模块的使用方法。Dify 的 helper 模块主要包括以下几个方面:URL 签名模块主要用于生成带有签名的 URL,以确保 URL 的安全性和有效性。它通过使用 HMAC-SHA256 算法对特定数据进行签名,并将签名结果附加到

2025-05-07 14:14:26 231

原创 【Dify(v1.x) 核心源码深入解析】Code Executor 模块

Dify 的 Code Executor 模块是一个功能强大且灵活的工具,它支持多种编程语言,提供了安全的代码执行环境,并通过模板转换器和代码提供者简化了代码执行的流程。本文详细介绍了 Code Executor 模块的各个核心组件及其协作方式,希望能帮助读者更好地理解和使用这一模块。

2025-04-30 13:55:11 299

原创 【Dify(v1.x) 核心源码深入解析】File 模块

文件模型(File Model)定义了文件的核心属性,如文件类型、传输方法、相关标识符等,是整个文件处理流程的数据基础。文件解析器(UploadFileParser)负责解析上传的文件,根据配置决定以何种方式(URL 或 Base64)提供图像数据。工具文件解析器(ToolFileParser)专注于工具文件的管理,提供工具文件管理器的获取接口。签名验证与生成(helpers.py)包含文件 URL 签名的生成与验证逻辑,确保文件访问的安全性。文件管理器(file_manager.py)

2025-04-30 13:32:00 430

原创 【Dify(v1.x) 核心源码深入解析】errors、extension 和 external_data_tool 模块

通过对 Dify 中 errors、extension 和 external_data_tool 模块的深入剖析,我们不仅了解了其各个模块内部的精细结构和工作原理,还掌握了它们之间的关联与协同机制。这些模块为 Dify 应用提供了强大的错误处理、灵活的扩展能力和便捷的外部数据集成支持,是构建现代化、高性能软件系统的重要基石。希望本文的讲解能够帮助您更好地理解和运用 Dify,激发您在软件开发领域的更多创意和实践。

2025-04-24 13:27:58 252

原创 【Dify(v1.x) 核心源码深入解析】callback handler 和 entities 模块

Callback handler 是 Dify 中用于处理工具调用、代理行为和流程控制的核心组件。捕获工具调用的开始、结束和错误事件。记录工具的输入、输出和执行时间。提供调试信息和日志输出。支持扩展功能,如追踪工具调用的上下文和结果。Entities 模块定义了 Dify 中的各种数据结构和实体类,用于描述模型、提供者、工具和配置等。这些类是 Dify 的核心数据模型,提供了统一的接口和结构。

2025-04-23 14:28:22 127

原创 【Dify(v1.x) 核心源码深入解析】App 模块:Entities、Features 和 Task Pipeline

Dify 是一个功能强大的 AI 应用开发框架,它通过模块化设计和灵活的任务处理机制,帮助开发者快速构建智能应用。在这篇文章中,我们将深入解析 Dify 的三个核心模块:Entities(实体)、Features(功能)和 Task Pipeline(任务管道)。通过详细的代码解读和示例,帮助你全面理解 Dify 的架构设计和实现细节。Entities 是 Dify 中用于表示核心数据结构的模块。它定义了各种实体类,用于封装应用生成、工作流、消息等数据。

2025-04-23 13:27:30 224

原创 【Dify(v1.x) 核心源码深入解析】Apps 模块

Dify 的 Apps 模块通过工作流和任务管道实现了复杂业务逻辑的处理。它通过事件驱动的方式协调任务的执行,支持流式输出和阻塞模式。通过合理的数据库连接管理和任务优化,可以确保系统的高性能和高可用性。希望本文能帮助你深入理解 Dify 的 Apps 模块,并在实际项目中灵活应用。如果你有任何疑问或建议,欢迎随时与我们交流!

2025-04-22 17:25:57 590

SMP2020微博情绪分类技术评测数据集

SMP2020微博情绪分类技术评测数据集 本次技术评测使用的标注数据集由哈尔滨工业大学社会计算与信息检索研究中心提供,原始数据源于新浪微博,由微热点大数据研究院提供,数据集分为两部分。     第一部分为通用微博数据集,该数据集内的微博内容是随机获取到微博内容,不针对特定的话题,覆盖的范围较广。     第二部分为疫情微博数据集,该数据集内的微博内容是在疫情期间使用相关关键字筛选获得的疫情微博,其内容与新冠疫情相关。     因此,本次评测训练集包含上述两类数据:通用微博训练数据和疫情微博训练数据,相对应的,测试集也分为通用微博测试集和疫情微博测试集。参赛成员可以同时使用两种训练数据集来训练模型。     每条微博被标注为以下六个类别之一:neutral(无情绪)、happy(积极)、angry(愤怒)、sad(悲伤)、fear(恐惧)、surprise(惊奇)。     通用微博训练数据集包括27,768条微博,验证集包含2,000条微博,测试数据集包含5,000条微博。     疫情微博训练数据集包括8,606条微博,验证集包含2,000条微博,测试数据集包含3,000

2022-12-29

Spark机器学习回归模型数据集

为了阐述本章的一些概念,我们选择了bike sharing数据集做实验。这个数据集记录了bike sharing系统每小时自行车的出租次数。另外还包括日期、时间、天气、季节和节假日等相关信息。

2016-06-15

Spark机器学习文本处理数据集

为了说明概念,我们将使用一个非常有名的数据集,叫作20 Newsgroups;这个数据集一般用来做文本分类。这是一个由20个不同主题的新闻组消息组成的集合,有很多种不同的数据格式。对于我们的任务来说,可以使用按日期组织的数据集。

2016-06-20

Spark机器学习推荐模型数据集

我们将使用推荐引擎中使用的电影打分数据集,这个数据集主要分为三个部 分:第一个是电影打分的数据集(在u.data文件中), 第二个是用户数据(u.user),第三个是电影数据(u.item)。除此之外,我们从题材文件中获取了每个电影的题材(u.genre)。

2016-06-18

Spark机器学习分类模型的数据集

考虑到推荐模型中的 MovieLens 数据集和分类问题无关,本章将使用另外一个数据集。这个 数据集源自 Kaggle 比赛,由 StumbleUpon 提供。比赛的问题涉及网页中推荐的页面是短暂(短暂 存在,很快就不流行了)还是长久(长时间流行)。

2016-06-15

jblas-1.2.4-SNAPSHOT

里MLlib库需要依赖[jblas线性代数库](http://jblas.org/),如果大家编译jblas的jar包有问题,可以获取。把jar包加到lib文件夹后,记得在spark-env.sh添加配置

2016-06-26

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除