当前搜索:

《一揽子高效文本分类技巧》论文阅读

https://blog.csdn.net/u011239443/article/details/80076720 论文地址:https://arxiv.org/pdf/1607.01759v2.pdf 摘要 本文提出了一种简单而有效的文本分类和表示学习方法。 我们的实验表明,我们的快速文本...
阅读(3) 评论(0)

《基于神经网络模型的自然语言处理先导》论文阅读(一)

https://blog.csdn.net/u011239443/article/details/80055046 论文地址:http://u.cs.biu.ac.il/~yogo/nnlp.pdf 本论文很长,设计了许多神经网络与深度学习的基础知识。本文,我们将只针对和自然语言处理领域相关的...
阅读(13) 评论(0)

《deep learning》学习笔记(8)——深度模型中的优化

https://blog.csdn.net/u011239443/article/details/80046684 机器学习中的算法涉及诸多的优化问题,典型的就是利用梯度下降法(gradient descent)求使损失函数 J(theta) 下降的模型参数 theta 。在深度学习,尤其是深度...
阅读(58) 评论(0)

《利用深度学习改进基于内容和混合音乐推荐》论文阅读

https://blog.csdn.net/u011239443/article/details/79984751 论文地址: https://www.smcnus.org/wp-content/uploads/2013/09/deep_mr.pdf 摘要 现有的基于内容的音乐推荐系...
阅读(29) 评论(0)

《采用递归神经网络对标签不分段的序列数据进行连接时间分类》论文阅读

https://blog.csdn.net/u011239443/article/details/79973269 论文地址: http://people.idsia.ch/~santiago/papers/icml2006.pdf 摘要 许多现实世界中的序列学习任务需要从嘈杂、不分段...
阅读(53) 评论(0)

《神经会话模型》阅读

https://blog.csdn.net/u011239443/article/details/79921375 论文: https://arxiv.org/pdf/1506.05869.pdf%20(http://arxiv.org/pdf/1506.05869.pdf) 摘要 会...
阅读(15) 评论(0)

傅里叶变换

作 者:韩 昊 知 乎:Heinrich 微 博:@花生油工人 知乎专栏:与时间无关的故事 谨以此文献给大连海事大学的吴楠老师,柳晓鸣老师,王新年老师以及张晶泊老师。 转载的同学请保留上面这句话,谢谢。如果还能保留文章来源就更感激不尽了。 ——更新于2014.6.6,想直接看更新的同学...
阅读(23) 评论(0)

谷歌工程师:聊一聊深度学习的weight initialization

转载自:http://www.toutiao.com/a6398066590973624577/?tt_from=weixin&utm_campaign=client_share&app=news_article&utm_source=weixin&iid=8721...
阅读(167) 评论(0)

TensorFlow指南(二)——练习思考:上手TensorFlow

http://blog.csdn.net/u011239443/article/details/79075392 创建一个计算图而不是直接执行计算的主要好处是什么?主要的缺点是什么? 答:主要好处: TensorFlow可以自动计算你的梯度(使用反向模式autodiff)。 Ten...
阅读(170) 评论(0)

自动微分(Automatic Differentiation)简介

http://blog.csdn.net/aws3217150/article/details/70214422 现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分。在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度...
阅读(193) 评论(0)

TensorFlow指南(一)——上手TensorFlow

http://blog.csdn.net/u011239443/article/details/79066094 TensorFlow是谷歌开源的深度学习库。不多介绍,相信准备学习TensorFlow的同学也会自己去更多的了解。本系列博文讲尽量不涉及深度学习理论,但是会给出相关理论对应的博文等资...
阅读(199) 评论(0)

《深度学习Ng》课程学习笔记04week1——卷积神经网络

http://blog.csdn.net/u011239443/article/details/79057016 1.1 计算机视觉 计算机视觉领域的问题 图片分类 目标检测 图片风格转化 深度学习在图像中的应用 过多的权重参数矩阵让计算、内存消耗使得传统神经网络不能...
阅读(144) 评论(0)

深度学习论文分类整理

1 深度学习历史和基础1.0 书籍█[0] Bengio, Yoshua, Ian J. Goodfellow, and Aaron Courville. "Deep learning." An MIT Press book. (2015). [pdf] (Ian Goodfe...
阅读(405) 评论(0)

tensorflow架构

原文 : http://blog.csdn.net/stdcoutzyx/article/details/51645396Basic Concepts张量(Tensor)名字就是TensorFlow,直观来看,就是张量的流动。张量(tensor),即任意维度的数据,一维、二维、三维、四维等数据统称...
阅读(281) 评论(0)

《deep learning》学习笔记(7)——深度学习中的正则化

机器学习中的一个核心问题是设计不仅在训练集上误差小,而且在新样本上泛化能力好的算法。许多机器学习算法都需要采取相应的策略来减少测试误差,这些策略被统称为正则化。而神经网络由于其强大的表示能力经常遭遇过拟合,所以需要使用许多不同形式的正则化策略。正则化通过对学习算法的修改,旨在减少泛化误差而不是训练...
阅读(1716) 评论(2)

《deep learning》学习笔记(6)——深度前馈网络

6.1 实例:学习 XOR 通过学习一个表示来解决 XOR 问题。图上的粗体数字标明了学得的函数必须在每个点输出的值。(左) 直接应用于原始输入的线性模型不能实现 XOR 函数。当 x 1 = 0 时,模型的输出必须随着 x 2 的增大而增大。当 x 1 = 1 时,模型的输出必须随着 x 2 ...
阅读(1112) 评论(0)

《基于深度学习的线上农产品销量预测模型研究》阅读笔记

ICM模型文中提出的 model- Imperial Crown Model(short for ICM)简单讲就是用自动编码器将权值初始化,然后反向传播优化模型。关于自动编码器可以参阅:http://blog.csdn.net/u011239443/article/details/7669280...
阅读(441) 评论(0)

《深度学习Ng》课程学习笔记03week2——机器学习(ML)策略(2)

2.1 进行误差分析标注错误: 2.2 清楚标注错误的数据 纠正错误 dev / test 数据集的方法: 2.3 快速搭建你的第一个系统,并进行迭代尽快的搭建你的第一个系统。 2.4 在不同的划分上进行训练并测试对于不同来源的数据,最佳方案可能并不是将其混合。如,我们最终需要预测的数据来...
阅读(399) 评论(0)

《基于机器学习的企业定价算法研究》阅读笔记

《基于机器学习的企业定价算法研究》 冯 平,宣慧玉,高宝俊 (西安交通大学管理学院.陕西西安710049)论文阅读笔记ASPEN中企定价的机理是:在定价过程中,企业首先要根据叫个因素判断自己当前所处的市场状态,再采取相应的对策。在每种市场状态下,企业都有三种对策:提高价格,降低价格和维持价格不...
阅读(401) 评论(0)

《深度学习Ng》课程学习笔记03week1——机器学习(ML)策略(1)

1.1 为什么是 ML 策略各种各样的机器学习策略。如何选择、使用? 1.2 正交化调参时,应将两个参数进行正交,降低操作的复杂: 1.3 单一数字评估指标 用平均值来代替多个值: 1.4 满足和优化指标准确率和运行时间之间的协调: 1.5 训练 / 开发 / 测试集划分1.6 开发集合...
阅读(443) 评论(0)
    个人资料
    专栏达人 持之以恒
    等级:
    访问量: 27万+
    积分: 4056
    排名: 9623
    博客专栏