Soul Joy Hub

但行好事,莫问前程。

对抗机器学习模型

1. Attack ML Model 随着AI时代机器学习模型在实际业务系统中愈发无处不在,模型的安全性也变得日渐重要。机器学习模型很可以会遭到恶意攻击,比较直接就能想到的如:人脸识别模型的攻击。训练出具有对抗性的机器学习模型,在业务系统存在着越来越重要的实际意义。 2. Attack 机器学习模...

2019-05-04 14:28:50

阅读数 16

评论数 0

ELMo

论文:《Deep contextualized word representations》 1. word2vector 我们先简单回顾下word2vector。我们想解的问题的是:如何将一个词语用向量来表示? 1.1 one-hot 首先想到的是使用one-hot来表示,如我们有一个词典:【a,...

2019-04-22 22:42:11

阅读数 36

评论数 0

异常值检测

1. 异常值检测 异常值检测想要做的任务是从数据中找出与其他数据显著不同的数据,其具体应用有如:信用卡盗卡检测、网络攻击检测、癌细胞检测等。 2. 看做二分类? 异常值检测能不能看做一个二分类任务来建模?通常来说,异常值不能被看做为一个类别,因为异常值的种类实在是太多了。比如说做数字图片分类,有异...

2019-04-15 09:15:59

阅读数 48

评论数 0

如何用人机协同提高客服效率?阿里巴巴客服助手诞生了

去年参与的项目 : https://mp.weixin.qq.com/s/JG_Ajl4uO4kIS7cyUXqztw

2019-03-27 21:35:02

阅读数 141

评论数 0

图解当前最强语言模型BERT:NLP是如何攻克迁移学习的?

前段时间,谷歌发布了基于双向 Transformer 的大规模预训练语言模型 BERT,该预训练模型能高效抽取文本信息并应用于各种 NLP 任务,该研究凭借预训练模型刷新了 11 项 NLP 任务的当前最优性能记录。技术博主 Jay Alammar 近日发文通过图解方式生动地讲解了 BERT 的架...

2019-01-05 18:52:37

阅读数 350

评论数 0

基于神经网络的智能对话系统(二)——机器学习背景知识

2. 机器学习背景知识 本章简要回顾了深度学习和强化学习,这些学习与后续章节中的会话AI最相关。 2.1 机器学习基础 Mitchell(1997)将机器学习广义地定义为包括任何计算机程序,该计算机程序通过经验E来改善其在某个任务T(由P测量)的性能。 如表1.2所示,对话是一个明确定义的学习问题...

2018-12-03 15:48:15

阅读数 745

评论数 0

基于神经网络的智能对话系统(一)——介绍

1. 介绍 1 “对话系统”和“对话AI”在科学文献中经常互换使用。差异反映了不同的传统。前一个术语更为笼统,因为对话系统可能纯粹基于规则,而不是基于人工智能。 2 我们未涉及的会话AI的一个重要主题是口语理解(SLU)。 SLU系统旨在从语音话语中提取其含义,​​其应用范围很广,从移动设备...

2018-11-27 17:03:12

阅读数 1002

评论数 0

Transformer

前言 2017 年中,有两篇类似同时也是笔者非常欣赏的论文,分别是 FaceBook 的 Convolutional Sequence to Sequence Learning 和 Google 的 Attention is All You Need,它们都算是 Seq2Seq 上的创新,本质上...

2018-11-20 10:17:53

阅读数 79

评论数 0

论文阅读:《Ask Me Anything: Dynamic Memory Networks for Natural Language Processing》

论文:https://arxiv.org/pdf/1506.07285.pdf 原文:http://www.hankcs.com/nlp/cs224n-dmn-question-answering.html 最有意思的一课,将所有NLP任务视作QA问题。模仿人类粗读文章和问题,再带着问题反复阅读文...

2018-11-08 14:13:10

阅读数 206

评论数 0

论文阅读:《AliMe Assist: An Intelligent Assistant for Creating an Innovative E-commerce Experience》

原文:https://www.zybuluo.com/Rays/note/1024203 阿里小蜜:提供创新电子商务体验的智能助理论文导读摘要: 在本文中,阿里团队介绍了会话机器人平台“阿里小蜜”。该智能助理设计提供一种创新性的电子商务体验,并已经在真实的商业场景中上线。当前,阿里小蜜为客户提供...

2018-11-07 20:48:22

阅读数 270

评论数 0

论文阅读:《AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine》

原文:http://www.sohu.com/a/229801262_100118081 AliMe聊天:基于序列到序列和重排的聊天机器人引擎 AliMe Chat: A Sequence to Sequence and Rerank based Chatbot Engine 阿里巴巴集团 ...

2018-11-07 18:21:44

阅读数 216

评论数 0

论文阅读:《Text Matching as Image Recognition》

原文:https://blog.csdn.net/sinat_33741547/article/details/80649542 一、概述 MatchPyramid来自Liang Pang等在2016发表的一篇文章Text Matching as Image Recognition,大意为利用图像...

2018-11-07 12:37:32

阅读数 243

评论数 0

TensorFlow文本摘要生成 - 基于注意力的序列到序列模型

原文:https://blog.csdn.net/tensorflowshizhan/article/details/69230070 1 相关背景 维基百科对自动摘要生成的定义是, “使用计算机程序对一段文本进行处理, 生成一段长度被压缩的摘要, 并且这个摘要能保留原始文本的大部分重要信息”. ...

2018-11-07 11:19:23

阅读数 509

评论数 0

论文阅读:《Deep Reinforcement Learning for Dialogue Generation》

原文:https://blog.csdn.net/liuchonge/article/details/78749623 文章亮点 本文是使用深度增强学习DRL的方法来解决多轮对话问题。首先使用Seq-to-Seq模型预训练一个基础模型,然后根据作者提出的三种Reward来计算每次生成的对话的好坏,...

2018-11-06 20:34:27

阅读数 122

评论数 0

论文阅读:《 Lip Reading Sentences in the Wild》

论文:https://arxiv.org/abs/1611.05358 原文:http://www.hankcs.com/nlp/cs224n-lip-reading.html 唇语翻译 将视频处理为以嘴唇为中心的图片序列,给或不给语音,预测正在讲的话。 这些数据可能来自新闻直播: 动画演示:...

2018-10-26 17:02:57

阅读数 329

评论数 0

论文阅读:《Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation》

论文:https://arxiv.org/pdf/1611.04558.pdf 原文:http://www.hankcs.com/nlp/cs224n-google-nmt.html 双语NMT 一般“瘦弱”的NMT系统只支持双语单向翻译,比如课上常见的这种: 如果想实现一个模型支持多语种互译怎...

2018-10-25 19:37:35

阅读数 369

评论数 0

论文阅读:《Visual Dialog》

论文:https://arxiv.org/pdf/1611.08669.pdf 原文:http://www.hankcs.com/nlp/cs224n-visual-dialog.html 术语Visual Dialog,大致这么翻译(通俗理解为斗图)。你可以给聊天机器人发送图片,它能理解图片的意...

2018-10-24 22:34:10

阅读数 179

评论数 0

论文阅读:《a simple but tough-to-beat baseline for sentence embeddings》

https://openreview.net/pdf?id=SyK00v5xx 原文:http://www.hankcs.com/nlp/cs224n-sentence-embeddings.html 句子Embedding动机 虽然这节课一直在讲词向量可以编码词的意思,但自然语言处理真正关心的是...

2018-10-24 19:17:19

阅读数 218

评论数 0

MovieTaster-使用Item2Vec做电影推荐

https://blog.csdn.net/fly_time2012/article/details/78439662 前言 自从Mikolov在他2013年的论文“Efficient Estimation of Word Representation in Vector Space”[1]...

2018-08-27 13:00:08

阅读数 290

评论数 1

论文阅读:《Wide & Deep Learning for Recommender Systems》

http://www.shuang0420.com/2017/03/13/%E8%AE%BA%E6%96%87%E7%AC%94%E8%AE%B0%20-%20Wide%20and%20Deep%20Learning%20for%20Recommender%20Systems/ Google...

2018-08-26 13:05:47

阅读数 132

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭