在线小说推荐网开发使用Python+Django+Mysql技术 基于用户、物品的协同过滤推荐算法 协同过滤推荐算法在小说网站中的运用 个性化推荐算法、机器学习、分布式大数据、人工智能开发 NovelRecommendWebPython
一、项目简介
1、开发工具和使用技术
Python3.8,Django3,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、layui文件上传组件、kindeditor富文本框组件等。
2、实现功能
前台用户包含:注册、登录、注销、浏览小说、搜索小说、小说章节、信息修改、密码修改、小说评分、小说收藏、小说评论、排行榜、热点推荐、个性化推荐小说等功能;
后台管理员包含:数据统计、用户管理、小说管理、小说类型管理、小说章节管理、评分管理、收藏管理、评论管理、浏览记录管理等。
个性化推荐功能:
排行榜:查询浏览数量最多的小说降序推荐,同时不包括当前登录用户浏览过的小说;
为你推荐:
游客:热点推荐(根据小说总评分和总收藏数量降序推荐)
登录用户:
基于用户的协同过滤推荐算法(根据评分数据),如果没有推荐结果,采用热点推荐(根据小说总评分降序推荐,同时是登录用户没有评分的);
基于项目的协同过滤推荐算法(根据收藏数据),如果没有推荐结果,采用热点推荐(根据小说收藏数量降序推荐,同时是登录用户没有收藏的)。
相关推荐:
与当前小说相同类型且评分较高的小说,同时是当前用户没有评分的小说。
小说数据来源:纵横中文网小说数据
3、开发步骤
开发文档
一、需求分析
主要是分析需要实现的功能、确定开发工具及技术等。例如:前台用户需要有登录、注册、注销、搜索小说、小说评分、个性化推荐等,后台管理员需要有登录、注销、用户管理、小说管理、小说类型管理等,个性化推荐使用基于用户的协同过滤推荐算法等。Python开发语言,mysql数据库,django开发框架等。
二、数据库设计
数据库设计使用navicat数据库管理工具,可通过sql语句脚本生成数据库表,也可以直接操作新建表设计表等。注意主外键关联设计,例如:评分记录表需要外键关联用户表和小说表。
三、页面设计
使用bootstrap前端框架,通过学习https://v3.bootcss.com/官方文档和开发案例来设计页面。
四、开发框架搭建
Django开发框架搭建请参考:使用pycharm创建django项目讲解.doc
五、功能开发
首先是进行前台用户首页的开发,其次是小说详情,然后是用户注册、登录等,接着是用户的评分、修改信息等,然后是进行管理员功能的开发,最后是进行前台用户的个性化推荐功能实现。
六、系统测试
主要是进行bug修改,推荐算法测试。
二、项目展示




































三、代码展示及运行结果










该项目是一个使用Python3.8和Django3构建的在线小说推荐平台,结合Mysql数据库和多种前端技术。实现了用户注册、登录、小说搜索、评分、收藏、评论等功能,并采用协同过滤算法进行个性化推荐。对于登录用户,推荐算法分为基于用户评分和项目收藏的协同过滤,如果无推荐结果,则转为热点推荐。此外,还提供了相关小说推荐。系统经过全面的测试和优化。
481

被折叠的 条评论
为什么被折叠?



