在线图书推荐网 Python+Django+Mysql开发技术 个性化图书推荐系统 协同过滤推荐算法在图书网站中的运用 基于用户、物品的协同过滤推荐算法 个性化推荐算法、机器学习、分布式大数据、人工智能开发 BookRecommendOnlinePython
一、项目简介
1、开发工具和使用技术
Python3.8,Django3,mysql8,navicat数据库管理工具,html页面,javascript脚本,jquery脚本,bootstrap前端框架,layer弹窗组件、layui文件上传组件、kindeditor富文本框组件等。
2、实现功能
前台用户包含:注册、登录、注销、喜好标签、浏览图书、搜索图书、信息修改、密码修改、图书评分、图书收藏、图书评论、热点榜单、热点推荐、个性化推荐图书等功能;
后台管理员包含:数据统计、用户管理、图书管理、图书类型管理、用户喜好标签管理、评分管理、收藏管理、评论管理、浏览记录管理等。
个性化推荐功能:
热点榜单:查询浏览数量最多的图书,同时不包括当前登录用户浏览过的图书;
个性化推荐:
游客:热点推荐(根据图书总评分和总收藏数量降序推荐)
登录用户:基于用户的协同过滤推荐算法(根据评分数据),
如果没有推荐结果,采用热点推荐(根据登录用户喜好标签下的图书的总评分降序推荐,同时是登录用户没有评分的);
基于项目的协同过滤推荐算法(根据收藏数据),
如果没有推荐结果,采用热点推荐(根据登录用户喜好标签下的图书的收藏数量降序推荐,同时是登录用户没有收藏的)。
猜你喜欢:
与当前图书相同类型且评分较高的图书,同时是当前用户没有评分的图书。
图书数据来源:豆瓣图书数据
3、开发步骤
开发文档
一、需求分析
主要是分析需要实现的功能、确定开发工具及技术等。例如:前台用户需要有登录、注册、注销、搜索图书、图书评分、个性化推荐等,后台管理员需要有登录、注销、用户管理、图书管理、图书类型管理等,个性化推荐使用基于用户的协同过滤推荐算法等。Python开发语言,mysql数据库,django开发框架等。
二、数据库设计
数据库设计使用navicat数据库管理工具,可通过sql语句脚本生成数据库表,也可以直接操作新建表设计表等。注意主外键关联设计,例如:评分记录表需要外键关联用户表和图书表。
三、页面设计
使用bootstrap前端框架,通过学习https://v3.bootcss.com/官方文档和开发案例来设计页面。
四、开发框架搭建
Django开发框架搭建请参考:使用pycharm创建django项目讲解.doc
五、功能开发
首先是进行前台用户首页的开发,其次是图书详情,然后是用户注册、登录等,接着是用户的评分、修改信息等,然后是进行管理员功能的开发,最后是进行前台用户的个性化推荐功能实现。
六、系统测试
主要是进行bug修改,推荐算法测试。
二、项目展示
三、代码展示及运行结果