POJ - 1141 Brackets Sequence

原创 2013年12月03日 00:26:23

【问题描述】

       定义如下规则序列(字符串):

       1.空序列是规则序列;

       2.如果S是规则序列,那么(S)和[S]也是规则序列;

       3.如果A和B都是规则序列,那么AB也是规则序列。

       例如,下面的字符串都是规则序列:

    (),[],(()),([]),()[],()[()]

       而以下几个则不是:

    (,[,],)(,()),([()

    现在,给你一些由‘(’,‘)’,‘[’,‘]’构成的序列,你要做的,是找出一个最短规则序列略……

【输入】

       输入文件仅一行,全部由‘(’,‘)’,‘]’,‘]’组成,没有其他字符,长度不超过100。

【输出】

       输出文件也仅有一行,全部由‘(’,‘)’,‘]’,‘]’组成,没有其他字符,把你找到的规则序列输出即可。因为规则序列可能不止一个,因此要求输出的规则序列中嵌套的层数尽可能地少。

思路:区间DP,由于计算d[i,j]需要知道d[i+1,j],d[i,j-1],d[i+1,j-1],所以按照j-i递增的顺序计算d[i,j]

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
const int MAXN = 110;

char s[MAXN];
int dp[MAXN][MAXN],key[MAXN][MAXN];
int n;

void DP(){
    for (int i = 0; i < n; i++)
        dp[i][i] = 1;
    for (int len = 1; len < n; len++)
        for (int i = 0; i < n - len; i++){
            int j = i + len;
            dp[i][j] = 0x3f3f3f3f;
            if ((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')){
                dp[i][j] = dp[i+1][j-1];
                key[i][j] = -1;
            }
            for (int k = i; k < j; k++)
                if (dp[i][j] > dp[i][k] + dp[k+1][j]){
                    dp[i][j] = dp[i][k] + dp[k+1][j];
                    key[i][j] = k;
                }
        }
}

void print(int l,int r){
    if (l > r)
        return;
    if (l == r){
        if (s[l] == '(' || s[l] == ')')
            printf("()");
        else if (s[l] == '[' || s[l] == ']')
            printf("[]");
    }
    else if (key[l][r] == -1){
        printf("%c",s[l]);
        print(l+1,r-1);
        printf("%c",s[r]);
    }
    else {
        print(l,key[l][r]);
        print(key[l][r]+1,r);
    } 
}

int main(){
    while (gets(s)){
        n = strlen(s);
        DP();
        print(0,n-1);
        printf("\n");
    }
    return 0;
}



poj 1141 Brackets Sequence(区间DP->括号匹配的最优生成)

Brackets Sequence Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%lld & %llu Submit ...

POJ 1141 Brackets Sequence (区间DP)

 这是一道挺好的区间DP题,类似往一个序列里插入东西的问题都可以往从中间分开考虑两块这个方向去想。 dp[i][j]表示i到j这一段最少需要插入括号的数量,显然这个数等于min(dp[i][k...

[ACM] poj 1141 Brackets Sequence (动态规划)

Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 23884   Accepte...

POJ1141 ZOJ1463 Brackets Sequence【区间dp】

题意十分简单,然而卡了我一上午,也怪自己状态不好,学成这样还想着玩?! 给定字符串,问最终匹配成的字符串【】() 开始还以为是像poj2955Brackets【区间dp 括号匹配】 这样的,结果是难...

poj1141 Brackets Sequence

看到这道题,第一感觉就是区间dp,但重要的就是如何状态转移了。 对于给定的串S,可分以下三种情况讨论: 1.S形如(S')或[S'],则只要把S'变成规则的就行; 2.S形如(S'则只需将S'变...

POJ 1141 Brackets Sequence(区间DP记录路径)

题意:给出一串括号,要你补上最少的括号使这一串括号都匹配。 思路:dp[i][j]表示区间(i,j)最少要补的括号数。对于每个dp[i][j],初始化为不与后面任何括号匹配的情况,那么显然我们需要填一...

poj 1141(Brackets Sequence 动态规划)

题目连接:http://poj.org/problem?id=1141 题目大意:给出一串括号序列(只包含小括号和中括号),求包含次子序列的长度最小的regular brackets seque...

poj1141Brackets Sequence (DP)

题目链接:http://poj.org/problem?id=1141 //poj1141 //题目意思,给出不一定规则的括号组合要把它们规则化 //这题用动态规划解决:定义两个二维数组num[i...
  • ssslpk
  • ssslpk
  • 2012年07月25日 01:08
  • 221

POJ 1141 Brackets Sequence(区间DP)

Description Let us define a regular brackets sequence in the following way:  1. Empty sequence is ...

poj 1141 Brackets Sequence(区间dp)

题目链接 Brackets Sequence Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 26254   A...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:POJ - 1141 Brackets Sequence
举报原因:
原因补充:

(最多只允许输入30个字)