BUAA 首A-简单树状数组(静态区间求和)

原创 2013年12月05日 00:49:55

石子总数

Description

有N堆石头摆成一行,第i堆石头有a[i]个,现在我有m次询问,请问第s堆到第t堆的石头总数是多少

Input

多组测试数据,第一行为数据组数T(0<T<15)
对于每组测试数据,第一行输入两个整数n和m(1<= n,m <= 100000),n,m意义如上描述
接下来一行n个整数,代表每堆石子数
接下来一行m行,每行两个数s,t分别代表一次询问

Output

对于每组数据,输出m行,表示每次询问的答案。

Sample Input

1
5 3
1 2 3 4 5
1 2
2 5
1 5

Sample Output

3
14
15

做法很多,巩固下树状数组。。

/****************************************************
* author:crazy_石头
* Pro:BUAA 815
* algorithm:树状数组
* Time:184ms
* Judge Status:Accepted
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>

using namespace std;

#define rep(i,h,n) for(int i=(h);i<=(n);i++)
#define ms(a,b) memset((a),(b),sizeof(a))
#define eps 1e-8
#define INF 1<<29
#define LL long long
const int maxn=100000+5;

LL C[maxn],n;
inline LL lowbit(LL x)
{
    return x&(-x);
}

inline void update(LL x,LL num)
{
    while(x<=maxn)
    {
        C[x]+=num;
        x+=lowbit(x);
    }
}

inline LL getsum(LL x)
{
    LL res=0;
    while(x>0)
    {
        res+=C[x];
        x-=lowbit(x);
    }
    return res;
}

LL a[maxn];

int main()
{
    int test;
    LL ret;
    scanf("%d",&test);
    while(test--)
    {
        int n,m;
        scanf("%d%d",&n,&m);
        ms(C,0);
        rep(i,1,n)
        {
            scanf("%lld",&a[i]);
            update(i,a[i]);
        }
        while(m--)
        {
            LL l,r;
            scanf("%lld%lld",&l,&r);
            ret=getsum(r)-getsum(l-1);
            printf("%lld\n",ret);
        }
    }
    return 0;
}



[树状数组] 区间求和的三种模型

树状数组在区间求和问题上有很高的效率,尤其在非常困难的比赛中(数据量大,对时间限制很严格的比赛)能发挥非常大的作用,其各种复杂度都要比线段树低很多,而且其代码简洁优美……有关区间求和,主要有以下三个模...
  • u012848631
  • u012848631
  • 2015年07月22日 22:06
  • 1636

利用差分实现的树状数组区间修改 区间求和

最开始和很不敢相信竟然树状数组还可以区间修改,既然常数这么小,而且好写易调的树状数组可以写区间修改了,那岂不美滋滋?所以我在网上查了查做法,竟然学会了??? Orz http://blog.csdn...
  • NOIAu
  • NOIAu
  • 2017年08月01日 15:17
  • 391

树状数组的区间修改,单点查询

树状数组的区间修改
  • u013514722
  • u013514722
  • 2014年10月17日 21:49
  • 2655

树状数组扩展(异或求和)

题目:逃票的chanming t
  • aszmq
  • aszmq
  • 2014年08月05日 12:55
  • 723

树状数组 --区间查询+区间修改

数据结构
  • FSAHFGSADHSAKNDAS
  • FSAHFGSADHSAKNDAS
  • 2016年09月24日 13:45
  • 3835

树状数组求区间最大值

讲这个的博文已经不少了,但感觉不够详细不够通俗易懂,所以我尝试着更详细更通俗易懂的说一下我的理解。   这个算法只支持单点修改和区间查询最值。每一次维护和查询的时间复杂度都是O((logn)^2),但...
  • u010598215
  • u010598215
  • 2015年09月04日 10:42
  • 4855

树状数组 区间修改,单点查询;

https://www.luogu.org/problem/show?pid=3368#sub 线段树水题啊; 但是我们要学习树状数组; 树状数组水题啊; 首先假如我们会模版1; 其实我们发...
  • largecub233
  • largecub233
  • 2017年02月23日 10:54
  • 857

树状数组(单点修改区间查询、区间修改单点查询、区间修改区间查询)

Description如题,已知一个数列,你需要进行下面两种操作: 1.将某一个数加上x 2.求出某区间每一个数的和Input第一行包含两个整数N、M,分别表示该数列数字的个数和操作的总个数。 ...
  • zars19
  • zars19
  • 2017年01月19日 22:28
  • 836

树状数组求区间极值

众所周知树状数组有着良好的特性:代码短,效率高。 但这样优良的数据结构不应只用于我们最初知道的,最基本的应用:单点修改,查询前缀和。 其应用可以更为广泛,如单点修改,查询区间极值。 由于区间极值无法像...
  • u012602144
  • u012602144
  • 2016年10月04日 16:58
  • 285

树状数组求区间最大值

这个算法只支持单点修改和区间查询最值。每一次维护和查询的时间复杂度都是O((logn)^2),但这是满打满算的时间复杂度。 假设是要维护和查询区间的最大值(最小值将max改成min 就好了) 这个算法...
  • mosquito_zm
  • mosquito_zm
  • 2017年07月31日 11:02
  • 285
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:BUAA 首A-简单树状数组(静态区间求和)
举报原因:
原因补充:

(最多只允许输入30个字)