关闭

支持向量机通俗导论(理解SVM的三层境界)

支持向量机通俗导论(理解SVM的三层境界) 作者:July 。致谢:pluskid、白石、JerryLead。 说明:本文最初写于2012年6月,而后不断反反复复修改&优化,修改次数达上百次,最后修改于2016年3月。 前言     动笔写这个支持向量机(support vector machine)是费了不少劲和困难的,原因...
阅读(293) 评论(0)

微软官方caffe之 matlab接口配置

前言 按照微软的官方地址配置可能会出现一个问题caffe_.mexw64找不到引用模块问题,或者在matlab里面压根找不到caffe_这个函数,下面会提到这两个问题。还是按照步骤来吧 【PS1】有GPU同样按照下述步骤,进行即可 【PS2】文章在matlab2013a、matlab2014a、matlab2015b中配置成功,但是在高版本或者更低版本情况下可能会出现问题 ...
阅读(811) 评论(5)

mnist实例编译之model的使用-classification

仿照cifar10的模型使用,本文对mnist的训练方式做了部分修改 【注】本文caffe安装路径为E:\CaffeDev-GPU\caffe-master。请自行参考并修改相关路径(debug以及release参考你编译caffe时候采用的模式) 第一步 按照前面的model生成方法的前两步骤制作数据集,得到两个文件夹。并拷贝到E:\CaffeDev-GPU\caffe-mas...
阅读(1102) 评论(1)

mnist实例编译之model的使用-matlab

前言 针对上一个caffe文章留下的matlab手写数字识别的问题,感谢caffe中文社区的 @ghgzh 的提示,原文请看:caffe中文社区 第一步 手写图片的制作方法我就不说了,直接把我自己画的几个数字放到云盘先: 三通道图像以及转换所需代码:链接:http://pan.baidu.com/s/1gfqeCAR 密码:88kk 转换后的灰度图像:链接:http:...
阅读(507) 评论(0)

机器学习中的范数规则化之(一)L0、L1与L2范数、核范数与规则项参数选择

今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化。我们先简单的来理解下常用的L0、L1、L2和核范数规则化。最后聊下规则化项参数的选择问题。这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文。知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正。谢谢。          监督机器学习问题无非就是“minimizeyour error while re...
阅读(581) 评论(0)

深度学习基础性资料学习

http://www.cnblogs.com/tornadomeet/tag/Deep%20Learning/...
阅读(82) 评论(0)

【caffe-Windows】cifar实例编译之model的生成

准备工作 按照之前的教程,成功生成过caffe,并且编译整个caffe.sln项目工程,在\caffe-master\Build\x64\Debug生成了一堆exe文件,后面会使用到除了caffe.exe的另外一个exe 【PS】很多VS安装过程中出现问题的,比如XX加载失败,XX未找到等,请自行寻找问题,很可能是原来的VS没卸载干净,或者VS版本缺少一些文件等导致。正常情况下...
阅读(149) 评论(0)

caffe+VS2013+Windows无GPU快速配置教程

前言 首先来一波地址: happynear大神的第三方caffe:http://blog.csdn.net/happynear/article/details/45372231 Neil Z大神的第三方caffe:https://initialneil.wordpress.com/2015/01/11/build-caffe-in-windows-with-visual-stud...
阅读(185) 评论(0)

前向神经网络算法原理

总体上来讲,神经网络的算法是比较复杂的,后面有非常精妙的数学原理,而且对这些数学方法,还需要证明其具有收敛性,所以很多神经网络的书籍,绝大部分都是一些数学模型介绍、推导和证明,对于非数学专业的我们来说,感沉像看天书一样。其实神经网络的精髓是将现实中的问题进行抽象,建立适合神经网络表示的模型,然后应用神经网络进行处理,不断调整优化网络结构和参数,直到最终达到满意的效果。所以成功应用神经网络,不需要太...
阅读(1732) 评论(1)

BP算法

BP算法是关于误差的反向传播算法,就是从输出层开始,将结果与预期结果相比较,求出误差,然后按照梯度最大下降方向,调整神经元的联接权值,然后依次逐层调整各层之间的连接权值,对于批量学习方式而言,不断重复上述过程,直到误差达到足够小时为止。 对于输出层而言,我们可以直接使用在上一篇博文中关于感知器模型的算法,BP算法的难点在于,如何处理隐藏层,因为隐藏层没有正确的输出信息用来计算误差。 下面我们将...
阅读(374) 评论(0)

基于tensorflow的MNIST手写数字识别

基于tensorflow的MNIST手写数字识别(二)--入门篇 一、卷积神经网络模型知识要点卷积卷积 1、卷积 2、池化 3、全连接 4、梯度下降法 5、softmax 本次就是用最简单的方法给大家讲解这些概念,因为具体的各种论文网上都有,连推导都有,所以本文主要就是给大家做个铺垫,如有错误请指正,相互学习共同进步。 二、卷积神经网络讲解  ...
阅读(227) 评论(0)
    个人资料
    • 访问:6097次
    • 积分:78
    • 等级:
    • 排名:千里之外
    • 原创:0篇
    • 转载:11篇
    • 译文:0篇
    • 评论:7条
    文章分类
    文章存档
    最新评论