【Python】Python的数据分析(四)——数据及绘图

转载 2015年11月18日 18:44:30
1. 创建数组
        numpy有五种方式可以创建数组:
① 由其他Python数据结构转换(如lists, tuples)
>>>x=np.array([0,1,2,3])
② 用NumPy内部方法创建(如arange, ones, zeros等)
>>>np.arange(2,3,0.1)
>>> np.indices((3,3))
③ 从磁盘读取标准的或自定义的数据
④ 通过使用strings或buffers创建
⑤ 使用库函数(如random)
2. Plotting
        matplotlib的基本绘制方法为plot,绘制风格有:bar, hist, box, density, area, hexbin, scatter和pie等。
        在pandas.tools.plotting也有绘图函数,参数是Series或DataFrame,这些函数为: ScatterMatrix, AndrewsCurves, ParallelCoordinates等。
        在matplotlib中,整个图像为一个Figure对象,在Figure中可以包含一个或多个Axes对象。每个Axes对象都是一个拥有自己坐标系统的绘图区域。
3. DataFrame分组
     数据分组是数据分析中重要的前提或内容,DataFrame的数据分组方法为:
DataFrame.groupby(by=None,axis=0,level=None,as_index=True,sort=True,group_keys=True,squeeze=False)
     参数内容:
     by:分组的依据,为函数或列名
     axis:坐标轴下标,默认为0
     level:维度的名称或索引
     as_index:标签是否作为索引
     sort:是否排序
     group_keys:是否添加group keys作为索引
     squeeze:是否在可能的情况下减少结果的维度

相关文章推荐

Python数据分析与展示(4)——Matplotlib基础绘图函数示例

最近在中国大学mooc网学习Python数据分析与展示相关知识,记入下来,以供参考。

绘图和可视化 《利用Python进行数据分析》第8章 读书笔记

绘图和可视化回归 第八章代码下载链接import matplotlib.pyplot as plt import numpy as np from numpy.random import randn ...

Python股市数据分析教程——学会它,或可以实现半“智能”炒股 (Part 2)

学会它,或可以实现半“智能”炒股

利用Python进行数据分析(2)—— Numpy Basic(2)

Boolean indexingnames = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe']) data = n...

利用python进行数据分析——pandas

哦~

《Python数据分析与挖掘实战》实战篇第一章拓展思考——偷漏税用户识别

本文是继上文中的上机实验之后的拓展思考部分的记录。此拓展思考部分主要目标是依据附件所提供的汽车销售企业的部分经营指标,来评估汽车销售行业纳税人的偷漏税倾向,建立偷漏税行为识别模型。 本次拓展实验分以...

利用Python进行数据分析——准备工作篇

因工作原因,开始学习数据分析,挖掘等的相关内容。目前正在利用空闲时间学习,此文为《利用python进行数据分析》的读书笔记,以及相关的注意点,写文以做留存提醒之用。目前使用的电脑是windows7+6...

Python股市数据分析教程——学会它,或可以实现半“智能”炒股 (Part 1)

本文由北邮@爱可可-爱生活 老师推荐,阿里云云栖社区组织翻译。 以下为译文 本篇文章是"Python股市数据分析"两部曲中的第一部分(第二部分的文章在这里),内容基于我在犹他州立大学MAT...
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)