【第22期】观点:IT 行业加班,到底有没有价值?

算法 -- 数字三角形之动态规划

原创 2015年11月20日 01:10:22

好久没有好好写算法啦,因此今天晚上就思考实现老师说的一道算法题目: 用动态规划求解数字三角形.

下面简单描述下题目含义:

数字三角形中的数字要求为不超过100的非负整数.题目规定从最顶层开始往下走,选择一条路径,这条路径要求每一步沿着左斜线或者右斜线走,并且路径上的数字之和为最大值.

例如下面这样一个三角形:
1. 7
2. 3 8
3. 8 1 0
4. 2 7 7 4
5. 5 5 2 6 5
它有5行数据,其路径数字和最大值为30.

注:原题目的三角形为等边三角形,我们在实际处理中,将其记录为直角三角形.这时候它的每一步就是沿下走或者沿右斜线走.

思考 : 如何解决这样一个问题?

既然要求最大路径和,那么我们计算每一行每一个元素到达起点的数字和,并将其存储下来.最后进行比较最后一行的路径和信息即可实现.

参考代码

/*************************************************************************
 **     >  Name : num_triangle.c
 **     > Author: LiYingXiao (Sweethreart502) 
 **     >  Mail : liyingxiao502@gmail.com
 **     >  Blog : http://blog.csdn.net/u013166575
 **     > Created Time: 2015年11月19日 星期四 23时32分00秒
 ************************************************************************/

#include <stdio.h>
#define N 5

// 处理函数
int Process ( int n ) ;

int main ( int argc , char * argv[] )
{
//    int n ;

    int max ;

//    printf ( "请输入数字三角形的行数:\n" ) ;
//    scanf ( "%d" , &n ) ;

    max = Process ( N ) ;

    printf ( "\n最大路径和为%d.\n" , max ) ;

    return 0 ;
}

// 核心处理函数
int Process ( int n ) 
{
    int a[6][6] = { { 0 } , { 0 } , { 0 } , { 0 } , { 0 } , { 0 } } ;

    int i , j ;

    int t1 , t2 ;

    int max = 0 ;

    // 初始化数字三角形
    printf ( "请输入数字三角形每一行数据信息:\n" ) ;
    for ( i = 1 ; i <= n ; i++ ) {
        printf ( "请输入第%d行数据信息:\n" , i ) ;
        for ( j = 1 ; j <= i ; j++ ) {
            scanf ( "%d" , &a[i][j] ) ;
        }
    }

    // 计算每一行的的每一个元素到起点的最大距离
    for ( i = 2 ; i <= n ; i++ ) {
        for ( j = 1 ; j <= i ; j++ ) {
            t1 = a[i][j] + a[i-1][j-1] ;
            t2 = a[i][j] + a[i-1][j] ;

            if ( t1 > t2 ) {
                a[i][j] = t1 ;
            } else {
                a[i][j] = t2 ;
            }
        }
    }

    // 比较最后一行数据信息,输出最大值即可
    for ( i = 1 ; i <= n ; i++ ) {
        if ( a[n][i] > max )   {
            max = a[n][i] ;
        }
    }

    return max ;
}

我的代码实现依赖于将数组存储为n+1行n+1列,下标含0的值都为0,这样做的原因是:
为了全局统一实现,我从三角形第二行开始计算它的每一个元素到达起点的最大数据和,采用计算方式是a[i][j] = max ( a[i-1][j-1] , a[i-1][j] ) + a[i][j] .
如果有不理解的可以尝试下在草稿纸上分析则很容易理解. -.-

0
0 7
0 3 8
0 8 1 0
0 2 7 7 4
0 5 5 2 6 5
上面的三角形即我的初始数组a.

版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

动态规划算法(后附常见动态规划为题及Java代码实现)

一、基本概念     动态规划过程是:每次决策依赖于当前状态,又随即引起状态的转移。一个决策序列就是在变化的状态中产生出来的,所以,这种多阶段最优化决策解决问题的过程就称为动态规划。 二、...
  • p10010
  • p10010
  • 2015-12-06 16:52
  • 6943

经典算法题:数字三角形寻找最大路径——动态规划和递归调用两种解法

题目:数字三角形,从顶部出发,在每一结点可以选择向左走或得向右走,一直走到底层,要求找出一条路径,该路径上的数字和最大,输出这个最大值。 (1)样例输入: 第一行是数塔层数N(1 第二行起,从一个...

程序员升职加薪指南!还缺一个“证”!

CSDN出品,立即查看!

三角形数字路径最大值问题

a=[ [75], [95,64], [17,47,82], [18,35,87,10], [20, 4, 82, 47, 65], [19 ,1 ,23, 75 ,3, 34], [8...

练习系统 实验三 数字三角形最大路径

当前编程题:实验三 大数、枚举问题(16级)---数字三角形最大路径 2. 问题描述 7 3     8 8      1      0 2     7  ...

EularProject 18: 三角形矩阵的最大路径

Maximum path sum I Problem 18 By starting at the top of the triangle below and moving to adjacen...

【java】数字三角形最长路径

有一个由非负整数组成的三角形,第一行只有一个数,除了最下行之外每个数字的左下方和右下方各有一个数,如下图所示: 每个结点的值代表它的权值,从第一行开始,每次可以往左下或右下走一格,直到走到最下行,...

poj 1163 dp 走三角形取路径的最大值

走三角形取路径的最大值

triangle- 求从顶向下的三角形的最小路径和问题

问题描述: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adj...

算法训练 数字三角形

问题描述   (图3.1-1)示出了一个数字三角形。 请编一个程序计算从顶至底的某处的一条路   径,使该路径所经过的数字的总和最大。   ●每一步可沿左斜线向下或右斜线向下走;   ●1<三角形行数...

算法训练 数字三角形

问题描述   (图3.1-1)示出了一个数字三角形。 请编一个程序计算从顶至底的某处的一条路   径,使该路径所经过的数字的总和最大。   ●每一步可沿左斜线向下或右斜线向下走;   ●1<三角形行...
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)