- 博客(43)
- 收藏
- 关注
原创 【数据库】HNU数据库系统期末考试复习重点
今天刚结束考试,考的范围基本没有超过这套重点内容,觉得整理的这份资料还算比较有用,遂睡前整理了下分享给大家,希望能帮到要准备数据库期末又时间紧张的学弟学妹~
2023-02-19 00:46:13 2231 6
原创 【计算机网络】实验五 网络层与链路层协议分析(PacketTracer)
通过本实验,进一步熟悉PacketTracer的使用,学习路由器与交换机的基本配置,加深对网络层与链路层协议的理解
2022-12-19 21:51:02 3612 1
原创 【计算机网络】实验四 应用层和传输层协议分析(PacketTracer)
通过本实验,熟悉PacketTracer的使用,学习在PacketTracer中仿真分析应用层和传输层协议,进一步加深对协议工作过程的理解。(frame),网络层的PDU是数据包(packet),传输层的 PDU是数据段(segment),其他更高层次的PDU是报文(message)。使用交叉线连接,注意必须连在 FastEthernet0接口( 快速以太网口,主要连接以太网(局域网)用的,简单说就是连接交换机或电脑用的 ),出现绿色小三角,说明连接成功。
2022-12-19 21:40:34 1293 1
原创 【动态规划】石子合并问题
1、算法总体思路类似于矩阵连乘问题,可以用dp[i][j]表示:合并第i堆到第j堆的最少得分2、但它们之间最大的区别是:此题为一个圆形操场——首尾相接,第一堆和最后一堆也是相邻的。故需要增加一维数据分别记录两种合并情况,如下图:3.最后枚举最后两堆的合并情况得到最小得分4.生成测试数据5.不同规模数据实验的时间对比计时方式:6.时间复杂度分析最多三层循环O(n3)
2022-12-07 01:15:21 1109 2
原创 【动态规划】独立任务最优调度问题
我认为做动态规划题的关键是找到一个合适的dp数组,确定它dp[i][j]的含义,用它和题目的最优子结构性质结合求解。具体思路如下:(笔记些许潦草hhh…)1.dp[i][j]表示第i个作业在第j(0-A,1-B)台机器上处理,两台机器处理完i个作业的最短总时间2.根据最优子结构性质貌似dp[i][0]=min(dp[i-1][0],dp[i-1][1])+a[i]dp[i][1]=min(dp[i-1][0],dp[i-1][1])+b[i]陷阱在这里,前面选择的不同会直接影响A、B机器的可用时刻,因此,直
2022-12-07 01:13:45 755
原创 【计算机网络】实验四 应用层和传输层协议分析(PacketTracer)
通过本实验,熟悉PacketTracer的使用,学习在PacketTracer中仿真分析应用层和传输层协议,进一步加深对协议工作过程的理解。
2022-12-03 00:00:12 2404 2
原创 【CCF CSP】动态规划解——202209-2何以包邮?
做这个题踩了一个好傻的坑:数组范围定义小了仅以此文纪念我苦苦debug的夜晚也给大家提供一个解题参考。
2022-11-27 01:07:24 1706
原创 【数据库】实验4:触发器实验
触发器类似于约束,但比约束灵活,可以实施更为复杂的检查和操作,具有更精细和更强大的数据控制能力。after是先完成数据的增删改,再触发,触发的语句晚于监视的增删改操作,无法影响前面的增删改动作;after是先完成数据的增删改,再触发,触发的语句晚于监视的增删改操作,无法影响前面的增删改动作;能够理解不同类型触发器的作用和执行原理,验证触发器的有效性。before是先完成触发,再增删改,触发的语句先于监视的增删改,这样就可以对new进行修改了。before是先完成触发,再增删改,触发的语句先于监视的增删改。
2022-11-21 22:16:04 2884 2
原创 【数据库】实验3:数据库完整性定义与检查
定义实体完整性,删除实体完整性。能够写出两种方式定义实体完整性的 SQL 语句:创建表时定义实体完整性、创建表后定义实体完整性。设计 SQL 语句验证完整性约束是否起作用。
2022-11-20 16:00:03 477
原创 【动态规划】m处理器问题
- 依然是个区间dp问题。前面如何分段会直接影响结果,所以应该记录每种分段的情况。故可以用dp[i][j\] 枚举记录前i个数据包被划分成j段的max{f(rm,rm+1)} 0
2022-11-16 22:48:03 557
原创 【动态规划】最大k乘积问题
依然是个区间dp问题。前面如何分段会直接影响分段乘积的最大值,所以应该记录每种分段的情况。故可以用dp[i][j] 枚举记录前i位数被划分成j段的最大乘积。为了便于计算分段后的整数乘积,可以用v[i][j]表示num[i]num[i+1]…num[j]的数值大小。
2022-11-16 20:33:08 338 2
原创 【动态规划】数字三角形问题
1.该路径可能以最后一行任意一个数为终点,故定义 dp【i】【j】 表示第i行第j个数为终点的最大数字总和2.每个点的上一个点要么来自左上,要么来自右上,而最左和最右只有一个来源 故递推式如下:dp【i】【1】=dp【i-1】【1】+a【i】【1】dp【i】【i】=dp【i-1】【i-1】+a【i】【i】j>1 && j
2022-11-15 20:45:59 272
原创 【动态规划】最优批处理问题
1.前i个作业被分为多少段会直接影响后面作业的花费,故需要枚举记录每种分段情况的最小花费。2.最后找出将i个物品分为多少段其花费最少即为答案
2022-11-15 19:45:02 611
原创 【动态规划】 加体积限制的01背包
此题在最基础的0-1背包问题上加了一个体积限制,其基本思想不变。记录容量为1—c,容积为1—d的背包处理前i的物品的最大价值。考虑能不能装下第i个物品,装得的话考虑值不值得装。用一个回溯来记录选择了哪些物品。
2022-11-15 16:06:54 235
原创 《数据库系统概论》第六章—关系数据理论 要点笔记
第六章——关系数据理论 难度突增,课本看了两三次有些概念还是记不住,就简单记了点笔记方便复习。有些符号实在不方便打,就直接截了图片。
2022-11-12 14:44:58 300
原创 【计算机网络】多线程\线程池对比(python)
- 线程池是在程序运行开始,创建好的n个线程,并且这n个线程挂起等待任务的到来。而多线程是在任务到来得时候进行创建,然后执行任务。- 线程池中的线程执行完之后不会回收线程,会继续将线程放在等待队列中;多线程程序在每次任务完成之后会回收该线程。- 由于线程池中线程是创建好的,所以在效率上相对于多线程会高很多。- 线程池也在高并发的情况下有着较好的性能;不容易挂掉。多线程在创建线程数较多的情况下,很容易挂掉。
2022-11-10 11:28:33 1291
原创 【计算机网络】python——socket编程(TCP/UDP)
Socket(套接字)是一种抽象层,应用程序通过它来发送和接收数据,就像应用程序打开一个文件句柄,将数据读写到稳定的存储器上一样。一个socket允许应用程序添加到网络中,并与处于同一个网络中的其他应用程序进行通信。一台计算机上的应用程序向socket写入的信息能够被另一台计算机上的另一个应用程序读取,反之亦然。
2022-11-10 11:20:52 2676
原创 《计算机网络自顶向下方法》第一章—计算机网络和因特网 要点笔记
定义了在两个或多个通信实体之间交换的报文格式和次序,以及在报文传输与接收或其他事件方面所采取的动作。利用下层提供的服务和本层协议实体相互交互执行 实现本层功能,通过接口为上层提供服务。d每个节点上的时延=d处理时延+d排队时延+d传输时延+d传播时延。独享资源:不共享 保证性能 但连接建立时间长 且浪费的片多。应用层、传输层、网络层、链路层、物理层。分组到达链路的速率>链路输出的能力。延时t=I/(1-I)·(L/R)在源端和目标端之间传输的速率。a:分组到达队列的平均速率。流量强度I=aL/R。
2022-11-05 00:05:17 354
原创 《计算机网络自顶向下方法》第三章—运输层 要点笔记
本篇文章记录了我阅读《计算机网络自顶向下方法》第三章的笔记,概括总结了一些要点,其中详细记录了TCP三握两挥过程。刚开始觉得啃大部头黑书好生涩困难,放弃了转去看中科大郑老师的网课链接:中科大郑烇、杨坚全套《计算机网络(自顶向下方法 第7版,James F.Kurose,Keit…。看过一次网课后再阅读教材,感觉通畅顺利了不少,而且网课与教材互为补充,强烈建议大家结合网课和黑书一起学习。
2022-11-03 10:02:25 708
原创 【数据库】实验 2.2 审计实验
一方面,为了保护系统重要的敏感数据,需要系统地设置各种审计信息,不能留有漏洞,以便随时监督系统使用情况,一旦出现问题,也便于追查;另一方面,审计信息设置过多,会严重影 响数据库的使用性能,因此需要合理设置。打开数据库审计开关。以具有审计权限的用户登陆数据库,设置审计权限, 然后以普通用户登录数据库,执行相应的数据操纵 SQL 语句,验证相应审计设 置是否生效,最后再以具有审计权限的用户登录数据库,查看是否存在相应的 审计信息。掌握数据库审计的设置和管理方法,以便监控数据库操作,维护数据库安全。
2022-10-30 12:21:33 1091
原创 【数据库】实验 2.1 自主存取控制实验
1.修改权限后要输入flush privileges刷新;2.all 不包括创建用户权限,要单独赋予全局创建用户权限3.根据报错提示去修改4.使用Navicat操作,查看SQL预览获得SQL语句5.最最简单的方式!直接使用Navicat进行可视化操作。
2022-10-30 12:18:27 2161
原创 分治法基本思想与时间复杂度分析
将一个规模为n的问题分解为k个规模较小的子问题子问题互相独立且与原问题相同递归地解这些子问题,然后将各子问题的解合并得到原问题的解。
2022-10-23 17:14:29 515
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人