计量经济学复习笔记(三)修正版

假设检验

原假设 H0
对立假设 H1
简单假设:假设为一个值
复合假设:没有确定值,假设变量在一个范围内
可能原假设正确, 然后拒绝 为I类错误
可能原假设错误, 没有拒绝 为II类错误

范 I类错误的概率定义为 显著性水平 α 一般取0.05
犯II类错误的概率定义为置信系数 1β ( β 为和 α 呈正相关的一个系数,原来错了 感谢LUC的指正!)
下面的图形象地表现了这之间的关系
图
置信区间:参数如 μ (注意 不是参数估计值)在 1α 的时间里落入该区间,就是说拒绝的时候其实是 我们的估计值偏离了参数的最常见出现范围,那么就是 显著性水平 α 越大,我们的这个常见范围划得越小,我们就越容易拒绝原假设,即犯I类错误的概率变大。

例子 正态分布

Z=X¯μσ2/nN(0,1)

那么 我们有置信水平 1α

就是

P(a<Z<a)=1α

代入Z的表达式,可以化为
P(X¯σna<μ<X¯+σna)=1α

然后查表查的a 带进去算出来就是置信水平为 1α 置信区间

注意: 这里是方差已知的情况, 方差未知则要用T分布检验,自由度为n-1
T分布 标准正态/ χ2 所构造
所以 拒绝域 接受域临界值的定义就很简单了

然后注意单尾检验的置信区间,只有一侧,所以a的取值不是 α/2 1α/2 而是1- α 或者 α 时的值

检验还有一个办法 求出 Z=X¯μ0σ2/n 时的值,然后跟表比较一下就可以了

  • 0
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
提供的源码资源涵盖了安卓应用、小程序、Python应用和Java应用等多个领域,每个领域都包含了丰富的实例和项目。这些源码都是基于各自平台的最新技术和标准编写,确保了在对应环境下能够无缝运行。同时,源码中配备了详细的注释和文档,帮助用户快速理解代码结构和实现逻辑。 适用人群: 这些源码资源特别适合大学生群体。无论你是计算机相关专业的学生,还是对其他领域编程感兴趣的学生,这些资源都能为你提供宝贵的学习和实践机会。通过学习和运行这些源码,你可以掌握各平台开发的基础知识,提升编程能力和项目实战经验。 使用场景及目标: 在学习阶段,你可以利用这些源码资源进行课程实践、课外项目或毕业设计。通过分析和运行源码,你将深入了解各平台开发的技术细节和最佳实践,逐步培养起自己的项目开发和问题解决能力。此外,在求职或创业过程中,具备跨平台开发能力的大学生将更具竞争力。 其他说明: 为了确保源码资源的可运行性和易用性,特别注意了以下几点:首先,每份源码都提供了详细的运行环境和依赖说明,确保用户能够轻松搭建起开发环境;其次,源码中的注释和文档都非常完善,方便用户快速上手和理解代码;最后,我会定期更新这些源码资源,以适应各平台技术的最新发展和市场需求。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值