UVa 1659 Help Little Laura 最大费用循环流

本文解析UVa1659题目,介绍如何通过最大费用循环流算法解决平面上有向线段的涂色问题,旨在最大化得分。文章详细展示了算法实现过程及核心代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

传送门:UVa 1659 Help Little Laura

题目大意:平面上有m条有向线段连接了n个点。你从某个点出发顺着有向线段行走,给走过的每条线段涂一种不同的颜色,最后回到起点。你可以多次行走,给多个回路涂色(要么不涂色,要么就至少给一个回路上的边全部涂色)。可以重复经过一个点,但不能重复经过一条有向线段。如下图所示的是一种涂色方法(虚线表示未涂色)。

每涂一个单位长度将得到X分,但每使用一种颜色将扣掉Y分。假设你拥有无限多种的颜色,问如何涂色才能使得分最大?输入保证若存在有向线段u -> v,则不会出现有向线段v -> u。n <= 100,m <= 500,1 <= X,Y <= 1000。

对于坐标(x,y)0 <= x,y <= 1000。

\epsfbox{p4030.eps}
题目分析:

本题的模型是:给出一张有向图,从中选出权和最大的边集,组成若干个有向圈。这里的边权等于题目中的d*X - Y,其中d为边的两个端点的欧几里德距离。

本题就是最大费用循环流问题。

先给代码。。。

代码如下:


#include <stdio.h>
#include <string.h>
#include <math.h>
#include <algorithm>
#define clear(A, X) memset(A, X, sizeof A)
#define min(A, B) ((A) < (B) ? (A) : (B))
using namespace std;

const int maxE = 2000000;
const int maxN = 256;
const int maxM = 32;
const double eps = 1e-8;
const int oo = 0x3f3f3f3f;

struct Edge {
	int v, c, n;
	double w;
};

Edge edge[maxE];
int adj[maxN], cntE;
int Q[maxE], head, tail;
int inq[maxN], cur[maxN], f[maxN];
double d[maxN];
int flow, s, t;
double cost;
int N, X, Y;
int x[maxN], y[maxN];
int deg[maxN];
int G[maxN][maxN];
double porfit[maxN][maxN];

void addedge (int u, int v, int c, double w) {
	edge[cntE].v = v;
	edge[cntE].c = c;
	edge[cntE].w = w;
	edge[cntE].n = adj[u];
	adj[u] = cntE++;
	
	edge[cntE].v = u;
	edge[cntE].c = 0;
	edge[cntE].w = -w;
	edge[cntE].n = adj[v];
	adj[v] = cntE++;
}

int spfa () {
	f[s] = oo;
	for (int i = 0; i < maxN; ++ i) d[i] = oo;
	clear (inq, 0);
	head = tail = 0;
	d[s] = 0;
	Q[tail ++] = s;
	cur[s] = -1;
	while (head != tail) {
		int u = Q[head ++];
		inq[u] = 0;
		for (int i = adj[u]; ~i; i = edge[i].n) {
			int v = edge[i].v;
			if (edge[i].c && d[v] > d[u] + edge[i].w) {
				d[v] = d[u] + edge[i].w;
				f[v] = min (f[u], edge[i].c);
				cur[v] = i;
				if (!inq[v]) {
					Q[tail ++] = v;
					inq[v] = 1;
				}
			}
		}
	}
	if (d[t] == oo) return 0;
	flow += f[t];
	cost += d[t] * f[t];
	for (int i = cur[t]; ~i; i = cur[edge[i ^ 1].v]) {
		edge[i].c -= f[t];
		edge[i ^ 1].c += f[t];
	}
	return 1;
}
	
double MCMF () {
	flow = cost = 0;
	while (spfa ());
	return cost;
}

void init () {
	clear (adj, -1);
	cntE = 0;
}

double dist (int i, int j) {
	return sqrt ((double) (x[i] - x[j]) * (x[i] - x[j]) + (y[i] - y[j]) * (y[i] - y[j]));
}

void work () {
	int number;
	double sum = 0;
	init ();
	clear (deg, 0);
	clear (G, 0);
	s = 0; t = N + 1;
	scanf ("%d%d", &X, &Y);
	for (int i = 1; i <= N; ++ i) {
		scanf ("%d%d", &x[i], &y[i]);
		while (1) {
			scanf ("%d", &number);
			if (!number) break;
			G[i][number] = 1;
		}
	}
	for (int i = 1; i <= N; ++ i) {
		for (int j = 1; j <= N; ++ j) {
			if (G[i][j]) {
				porfit[i][j] = Y - dist (i, j) * X;
				if (porfit[i][j] > 0) {
					addedge (i, j, 1, porfit[i][j]);
				}
				else {
					addedge (j, i, 1, -porfit[i][j]);
					//deg[] < 0:出度小于入度,deg[] > 0:出度大于入度
					++deg[j];
					--deg[i];
					sum += porfit[i][j];
				}
			}
		}
	}
	for (int i = 1; i <= N; ++ i) {
		if (deg[i] > 0) addedge (s, i,  deg[i], 0);
		if (deg[i] < 0) addedge (i, t,  -deg[i], 0);
	}
	printf ("%.2f\n", -(MCMF () + sum) + eps);
}

int main () {
	int cas = 0;
	while (~scanf ("%d", &N) && N) printf ("Case %d: ", ++cas), work ();
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值