hdu 6611 K Subsequence(最大费用流)

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/pall_scall/article/details/99674795

hdu6611

题意:

从一个无序数组中选出kk个非严格递增序列使得总和最大。

思路:

(出题人卡spfaspfa费用流还是比较骚的。。)

源点向每一个数建一条容量为1,花费为0的边。 将每个数拆成两个点保证只选中一次,点间建一条容量为1,费用为a[i]-a[i]的边,小的点向大的点连容量为1,花费为0的边,然后点向汇点建一条容量为1,费用为0的边。 还需要一个超级汇点,汇点到超级汇点连容量为k,费用为0的边。
跑dij费用流。

#include <iostream>
#include <algorithm>
#include <queue>
#include <math.h>
#include <stdio.h>
#include <string.h>
#include <algorithm>
#define MAXN_ 100005
#define INF 0x3f3f3f3f
#define P pair<int,int>
using namespace std;
struct edge
{
    int to,cap,cost,rev;
};
int n,m,flow,s,t,res,h[MAXN_];
vector<edge> G[MAXN_];
int dist[MAXN_],prevv[MAXN_],preve[MAXN_]; // 前驱节点和对应边
inline void addEdge(int u,int v,int cap,int cost)
{
    //G[u].push_back(edge(v,cap,cost,G[u].size()));
    G[u].push_back((edge)
    {
        v,cap,cost,(int)G[v].size()
    });
    G[v].push_back((edge)
    {
        u,0,-cost,(int)G[u].size()-1
    });
} // 在vector 之中找到边的位置所在!
inline void min_cost_flow(int s,int t,int f)
{
    fill(h+1,h+1+m,0);
    flow = res = 0;
    while(f > 0)
    {
        priority_queue<P,vector<P>, greater<P> > D;
        memset(dist,INF,sizeof dist);
        dist[s] = 0;
        D.push(P(0,s)); 
        while(!D.empty())
        {
            //puts("ss");
            P now = D.top();
            D.pop();
            if(dist[now.second] < now.first) continue;
            int v = now.second;
            for(int i=0; i<(int)G[v].size(); ++i)
            {
                edge &e = G[v][i];
                if(e.cap > 0 && dist[e.to] > dist[v] + e.cost + h[v] - h[e.to])
                {
                    dist[e.to] = dist[v] + e.cost + h[v] - h[e.to];
                    prevv[e.to] = v;
                    preve[e.to] = i;
                    D.push(P(dist[e.to],e.to));
                }
            }
        }
        // 无法增广 , 就是找到了答案了!
        
        if(dist[t] == INF) break;
        for(int i=1; i<=m; ++i) h[i] += dist[i];
        int d = f;
        for(int v = t; v != s; v = prevv[v])
            d = min(d,G[prevv[v]][preve[v]].cap);
        f -= d;
        //printf("%d\n",f);
        flow += d;
        res += d * h[t];
        for(int v=t; v!=s; v=prevv[v])
        {
            edge &e = G[prevv[v]][preve[v]];
            e.cap -= d;
            G[v][e.rev].cap += d;
        }
    }
}

int k;
int a[MAXN_];
int main(){
    int t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&k);
        for(int i = 0; i <= 2*n+2; i++) G[i].clear();
        for(int i = 1; i <= n; i++) scanf("%d",&a[i]);
        int st = 0,ed = n+n+1;
        m = 2*n+2; //点的总个数
        for(int i = 1; i <= n; i++){ //源点到数
            addEdge(st,i,1,0);
        }
        for(int i = 1; i <= n; i++){ //拆点
            addEdge(i,i+n,1,-a[i]);
            addEdge(i+n,ed,1,0);
            for(int j = i+1; j <= n; j++){ //小到大
                if(a[i] <= a[j]) addEdge(i+n,j,1,0);
            }
        }   
        int  supered = n+n+2;
        //addEdge(superst,st,k,0);
        addEdge(ed,supered,k,0);
        
        int cost;
        min_cost_flow(st,supered,INF);
        printf("%d\n",-res);

    }
    return 0;
}
展开阅读全文

没有更多推荐了,返回首页