Spark有三种运行模式,分别为:
local模式-只运行在本地,相当于伪分布式
standalone模式-这种模式只需要安装Spark即可,使用自带的资源管理器
Spark on yarn/mesos模式-这种模式Spark将使用yarn/mesos作为资源管理器
一般来说,standalone适合只想体验一把Spark集群的人,如果想将Spark应用于生产环境,还需要借助第三方的资源调度模块来优化Spark的资源管理。
Spark以哪一种模式运行可以在执行spark-shell或者spark-submit命令时通过指定 --master参数来设置,如果不设置默认以local方式单机运行。
本次记录的是Spark 的安装与配置,使用的是基本的配置选项,如果想了解Spark的更多配置选项来优化Spark集群的性能可以参阅官方文档或者关注后续文章。
由于我想在Spark安装完成后运行在yarn之上,所以在配置过程中添加了一些hadoop的配置,如果想使用Spark on yarn需要安装Hadoop2.0以及以上版本。本例是在Hadoop2.4.0平台搭建,当然,如果仅是做学习体验用只使用local或standalone模式可以不用安装Hadoop。
关于Hadoop集群的安装部署,请参考:http://blog.csdn.net/u013468917/article/details/50965530
本次在上述双节点Hadoop集群的基础上安装Spark。两个节点分别为:
master 192.168.1.131
slave1 192.168.1.125

本文介绍如何在双节点Hadoop集群上安装和配置Spark,并详细解释了安装Scala、配置Spark环境变量及启动Spark的过程。
最低0.47元/天 解锁文章
394

被折叠的 条评论
为什么被折叠?



