- 博客(1460)
- 收藏
- 关注
原创 掌握大数据领域分布式存储的关键要点
分布式存储的学习路径可以概括为“原理→实践→优化原理:掌握数据分片、冗余机制、一致性协议等底层原理(本文已覆盖)。实践:搭建一个分布式存储集群(如MinIO、HDFS),动手操作数据的上传、下载、故障恢复。优化:分析集群的性能瓶颈(比如元数据延迟、节点负载不均),尝试用负载均衡、缓存等技术优化。分布式存储的核心是“协同”——让多台机器像一台机器一样工作。理解了这一点,你就能透过复杂的技术细节,看到分布式存储的本质。
2025-09-22 13:31:17
230
原创 如何构建高可用的大数据预测分析平台?
很多人对“高可用”的理解停留在“系统永远在线”,但现实中100%可用是不可能的——硬件会故障、网络会抖动、代码会bug。容错能力:部分组件故障时,系统仍能正常提供服务;快速恢复能力:故障发生后,能在最短时间内恢复服务;一致性保障:故障期间数据不丢、结果不错。99.9% 可用性 = 每年停机约8.76小时;99.99% 可用性 = 每年停机约52分钟;99.999% 可用性 = 每年停机约5分钟(这是金融核心系统的常见要求)。我是张三。
2025-09-22 11:54:06
440
原创 大数据领域数据产品的安全审计与合规性管理
总结:安全审计与合规管理的核心原则参考资料:法规原文、工具文档与行业报告附录:合规框架映射表与审计脚本模板定义:数据安全审计是对数据生命周期中“保密性、完整性、可用性(CIA)”的系统性检查,通过技术手段记录、分析数据操作行为,验证安全控制措施的有效性。核心目标风险识别:发现未授权访问、数据泄露、篡改等安全事件;合规验证:证明数据处理行为符合法规要求(如GDPR第32条“安全措施”);责任追溯:定位安全事件的责任人与操作路径(如“谁在何时访问了敏感数据”)。审计范围生命周期阶段审计重点。
2025-09-22 10:22:03
728
原创 AI元宇宙营销的故障排查:架构师的5个常用工具
AI元宇宙营销的故障排查是体系化的工程跨服务链路追踪:用Jaeger(OpenTelemetry)还原请求链路,定位延迟环节;实时性能监控:用Prometheus + Grafana监控系统指标,保障SLA;AI模型调试:用NVIDIA Triton Inference Server调试模型推理,优化延迟;虚拟交互调试:用WebXR Debugger调试VR/AR场景,提升用户体验;智能合约调试:用Hardhat调试区块链合约,确保权益执行正确。作为架构师,我们不仅要掌握这些工具的使用,更要。
2025-09-22 03:53:16
799
原创 大数据领域 Hadoop 的云部署方案探讨
Hadoop 是大数据领域的“基石”,它像一个“大数据仓库的流水线”,负责存储(HDFS)和处理(MapReduce/YARN)海量数据。但传统的“本地服务器部署”方式,就像“固定在街角的小商店”——货架(存储)和员工(计算资源)都是固定的,遇到大促(数据峰值)时会不够用,平时又会浪费。如何把 Hadoop 从“固定小商店”搬到“弹性超市”(云端),解决传统部署的“资源僵化”问题。我们会覆盖云部署的核心方案、操作步骤、成本模型,以及实际应用场景,让你能根据自己的需求选择合适的方案。
2025-09-22 02:21:12
644
原创 揭秘!AI应用架构师打造个性化AI驱动深度研究平台
当科研人员面临信息过载(全球每年发表800万+篇论文)、个性化需求割裂(传统平台“千人一面”)、全流程效率瓶颈(文献筛选→知识组织→实验设计耗时占比超60%)三大痛点时,个性化AI驱动深度研究平台成为破局关键。本文以AI应用架构师的视角,从科研本质的第一性原理用用户画像+知识图谱构建“科研认知大脑”,解决“找对文献”的问题;用增量学习+可解释推荐平衡个性化与多样性,避免“信息茧房”;用微服务+事件驱动架构支撑全流程协作,打通“从发现到创新”的闭环。
2025-09-22 00:49:08
590
原创 企业级数据治理:大数据环境下的数据资产管理策略
在大数据时代,企业面临着“数据爆炸”与“价值荒漠”的矛盾:一方面,来自业务系统、IoT设备、社交媒体的结构化与非结构化数据以PB级增长;另一方面,分散、冗余、低质量的数据像“废墟”一样堆积,无法为决策提供有效支撑。企业级数据治理正是解决这一矛盾的核心武器——它不是简单的“管数据”,而是通过标准化、流程化的管理,将“数据废墟”转化为“可增值的资产银行”。本文将从背景痛点核心概念技术实现实际案例未来趋势。
2025-09-21 23:17:03
380
原创 符合行业标准的智能物流AI平台架构,AI应用架构师的合规设计
当快递小哥的配送路线能自动避开拥堵、仓库机器人能精准预测补货需求、冷链车的温度能实时预警时,智能物流早已从“黑科技”变成了行业标配。但**“智能”不是目的,“安全合规的智能”才是生存底线**——欧盟《AI法案》要求算法必须“可解释”,我国《个人信息保护法》禁止“过度采集数据”,物流企业的AI系统稍有不慎就会陷入“效率与合规的两难”。如何设计“符合行业标准”的分层架构?AI应用架构师要在哪些环节嵌入合规设计?从“数据采集”到“算法推理”,每一步的合规陷阱怎么避?
2025-09-21 21:39:54
619
原创 虚拟数字人品牌建设踩过的坑:AI架构师用这3个架构技巧解决了
品牌定位模糊:许多虚拟数字人在品牌建设初期,未能清晰界定自身的目标受众、独特价值主张和品牌形象。这导致其在市场中缺乏辨识度,难以与竞争对手区分开来,无法有效吸引目标用户群体。技术架构不完善:虚拟数字人的运行依赖复杂的技术架构,包括建模、动画驱动、语音交互等。技术架构的不完善可能导致数字人形象不逼真、动作生硬、交互延迟等问题,严重影响用户体验,进而损害品牌形象。用户体验不佳:虚拟数字人与用户的交互体验是品牌建设的关键。
2025-09-21 20:02:41
318
原创 AI应用架构师亲授:金融市场AI监控系统的架构优化与创新思路
金融市场的核心矛盾是“数据流速快”(每秒百万条交易数据)、“决策要求高”(延迟1秒可能损失千万)、“风险隐蔽性强”(欺诈交易、市场操纵往往藏在正常数据中)。AI监控系统的目标是在“数据产生-风险识别-决策执行”链路中实现“亚毫秒级延迟”+“99.9%准确率”,覆盖欺诈检测、合规监控、市场操纵识别、风险预警四大场景。本文聚焦架构优化,解决传统系统“实时处理能力弱、算法适应性差、可扩展性不足、运维效率低”的问题,范围涵盖从“数据采集”到“模型部署”的全流程。术语定义生活化比喻实时数据管道。
2025-09-21 18:30:39
768
原创 AI提示系统效果监测:提示工程架构师的关键任务
在AI大模型时代,提示工程(Prompt Engineering)是连接人类意图与模型能力的核心桥梁。重提示设计,轻效果监测——花费大量精力打磨提示模板,却没有系统跟踪“提示到底有没有用”“效果波动的原因是什么”“如何持续优化”。你为客服系统设计了一个“故障排查提示”,上线初期准确率90%,但两周后突然降到70%,却不知道是用户问题变复杂了,还是大模型版本更新导致提示失效;你优化了产品说明书的“问答提示”,但用户反馈“回答太长”,可你没有监测“输出长度”和“用户满意度”的关联;
2025-09-21 16:58:32
449
原创 大数据特征工程:数据预处理的关键步骤详解
我是张三,资深大数据工程师,专注于特征工程和机器学习。曾在阿里、腾讯负责过电商、金融的大数据项目,擅长用Spark处理TB级数据。我的公众号「大数据干货铺」会分享更多实战技巧,欢迎关注!最后的话:数据预处理是「慢工出细活」——你对数据越用心,模型给你的回报就越多。希望这篇文章能帮你跨过「预处理」的门槛,写出更有效的特征,训练出更好的模型。下一篇,我会讲「特征构建」——如何从原始特征中挖掘出更有价值的特征(比如「最近7天的浏览次数」「用户的购买频率」)。敬请期待!—— 完 ——
2025-09-21 15:21:22
606
原创 AI应用架构师的优化技巧:AI系统性能测试方案攻略
用户抱怨“回复太慢,等了3秒才出来”;GPU资源利用率长期低于30%,成本居高不下;向量检索的召回率随并发量上升暴跌至70%,导致回答“驴唇不对马嘴”。这些问题的根源,往往是缺乏系统的AI性能测试方案——传统性能测试工具(如JMeter)无法覆盖AI特有指标(token生成速度、向量召回延迟),单点测试无法暴露全链路瓶颈,而“拍脑袋”的优化又会引发新的问题。本文将为AI应用架构师提供一套从0到1的全链路性能测试方法论明确AI系统的核心性能指标与测试场景;搭建可复现的测试环境与监控体系;
2025-09-21 13:49:24
690
原创 数据中台架构设计:企业数字化转型的核心引擎
在数字化时代,企业的核心资产从“实物”转向“数据”。数据孤岛:各业务系统的数据分散存储,格式不统一,无法协同;数据到业务的“最后一公里”堵塞:数据停留在数据库里,业务人员不会用、不敢用,无法转化为价值。数据中台的出现,就是为了解决这两个问题。它不是“更先进的数据仓库”,而是一个“数据资产化+服务化”的平台——把企业的零散数据变成可管理、可复用的“数据资产”,再包装成业务能直接使用的“数据服务”,让数据像水电一样,随用随取。统一数据资产。
2025-09-21 12:27:27
426
原创 数据中台数据资产估值模型:数据变现新思路
本文旨在为企业提供一套完整的数据资产估值方法论,帮助企业在数据中台建设过程中更好地评估和管理数据资产价值。范围涵盖数据资产估值的基本概念、评估维度、量化方法、数学模型以及实际应用场景。本文将首先介绍数据资产估值的核心概念,然后详细阐述估值模型的构建方法,包括评估维度、量化指标和数学模型。接着将通过实际案例展示估值模型的应用,最后探讨数据资产变现的路径和未来发展趋势。数据中台:企业级数据共享和能力复用平台,通过统一的数据标准和治理体系,实现数据的集中管理和服务化。数据资产。
2025-09-21 10:55:23
450
原创 AI应用架构师必知:企业虚拟业务创新的AI模型服务编排架构
AI模型服务编排(AI Model Service Orchestration)是以业务目标为核心,对多个AI模型服务、传统IT系统、数据资源进行动态调度、流程管理和优化的技术体系。把「零散的AI能力」转化为「可落地的业务价值」;在**响应时间(RT)、成本(Cost)、精度(Accuracy)**三个维度间找到最优解;支持业务场景的快速迭代(比如从「虚拟导购」扩展到「虚拟售后」)。这一层是「编排的起点」,直接对接企业的虚拟业务场景。核心原则是:用业务人员能理解的语言描述流程,而非技术术语。
2025-09-21 09:23:19
499
原创 大数据领域Flink的集群搭建与优化
Apache Flink作为流优先的分布式计算引擎,凭借低延迟、Exactly-Once语义和流批一体能力,成为大数据实时处理的事实标准。本文从第一性原理出发,系统拆解Flink集群的核心架构与运行机制,手把手教你完成YARN与K8s环境下的集群搭建,并深入探讨生产级优化策略——从资源隔离到状态管理,从Checkpoint调优到故障恢复。无论是入门者还是资深工程师,都能通过本文掌握“从0到1搭建稳定Flink集群+从1到100优化性能”的全链路能力。Flink集群的核心目标是。
2025-09-21 02:54:36
469
原创 探索大数据领域数据架构的行业应用案例
我们常说“数据是石油”,但 raw data(原始数据)其实是“埋在地里的原油”——不提炼(加工)、不运输(传输)、不分配(应用),根本变不成能开车的汽油。大数据架构就是“原油加工厂的管道和设备”:它帮你把分散在各处的数据“集中起来、理清楚、用起来”,最终变成能解决业务问题的“生产力”。本文的范围是中小企业到大型企业的典型大数据架构,重点讲“如何用架构解决真实痛点”,不聊“量子计算”这类玄乎的技术,只讲“你今天就能用的方法”。故事引入:用奶茶店的“数据乱麻”引出架构的价值;核心概念。
2025-09-21 01:17:22
380
原创 数据中台在大数据领域的实时数据集成策略
数据中台的实时数据集成不是“技术堆叠”,而是体系化的策略设计用日志CDC替代查询CDC:实现低延迟、高准确的增量数据捕获;消息队列分层:解耦数据源与下游,提高数据复用率;流批一体:避免“两套系统”的维护成本;元数据驱动:自动适配Schema变化,减少人工干预;实时质量管控:事中拦截脏数据,保证数据可靠性;高可用与容错:确保数据不丢不重,任务稳定运行。实时数据集成是数据中台的“生命线”,但它不是“银弹”——没有最好的策略,只有最适合业务的策略。
2025-09-20 23:40:11
486
原创 2023提示工程开发者大会:最值得关注的10个演讲
在大模型时代,提示工程(Prompt Engineering)是连接人类意图与模型能力的“翻译层”:它通过设计精准的指令、示例或上下文,激活大模型的知识库,引导其输出符合预期的结果。2022年,提示工程还停留在“试错式调参”阶段;2023年,随着GPT-4、Claude 2等通用大模型的普及,提示工程正式进入体系化研究阶段——研究者开始用信息论、贝叶斯推断等数学工具建模提示的作用机制,工程师开始构建“提示库+自动生成+评估”的工业化流程,行业用户开始将提示工程融入核心业务流程(如金融风控、医疗诊断)。
2025-09-20 22:03:00
425
原创 洞察本质!AI应用架构师的数据安全服务AI防护新思路
随着AI技术的广泛应用,数据安全问题日益凸显。AI应用在处理大量敏感数据时,面临诸如数据泄露、模型窃取等诸多威胁。本文提出一种全新的数据安全服务AI防护思路,通过融合多种AI技术,构建多层次、智能化的数据安全防护体系。读者读完本文,将深入理解AI应用中的数据安全挑战,掌握基于AI的创新性防护方案的设计与实现,提升在AI应用架构设计中保障数据安全的能力。文章首先介绍数据安全问题背景与动机,阐述核心概念与理论基础,接着详细说明环境准备、分步实现过程,深入解析关键代码,并对结果验证、性能优化等方面展开讨论。
2025-09-20 20:31:08
527
原创 揭秘大数据领域多维分析的高效工作流程
你有没有遇到过这样的场景?业务方问:“近半年华北地区线上渠道的家电销售额为什么下降了?”你翻出Hive SQL写了100行联表查询,等了40分钟结果才出来,却发现维度不全(没区分一级/二级家电品类);领导要“各季度各品类的客单价对比”,你熬夜做了5张Excel报表,结果下周业务方又要加“渠道维度”,你不得不重新跑数据;数据量从100GB涨到1TB后,原来的Spark SQL查询从5分钟变成了1小时,资源占用率飙升到80%,运维同事天天找你“算账”。这些问题的核心不是你“不会写SQL”,而是。
2025-09-20 19:09:06
420
原创 大数据OLAP查询优化:SQL调优实战指南
你有没有遇到过这样的场景?写了一条看似简单的SQL,跑了10分钟还没出结果;或者明明只查几列数据,却要扫描整个100GB的表;再或者复杂join直接把集群资源打满,导致其他任务崩溃。这些问题的根源,往往不是你的SQL写得“丑”,而是没摸透OLAP的底层逻辑。如何通过执行计划定位查询瓶颈?列存储为什么比行存储快10倍?分区键选时间还是用户ID?数据倾斜怎么破?预计算如何平衡“速度”与“冗余”?最终,让你的SQL从“泥地开车”变成“高速巡航”,查询效率提升10倍甚至100倍。
2025-09-20 17:37:22
718
原创 Kappa架构与数据湖集成:实时数据入湖方案设计与实现
数据湖(Data Lake)是一个集中式存储系统,用于存储海量的原始数据(结构化、半结构化、非结构化),并支持通过schema-on-read的方式进行分析。多格式支持:可以存储Parquet、ORC、JSON、CSV、图片、视频等任意格式;schema灵活性:写入时不强制schema,读取时根据需求解析(schema-on-read);低成本:基于对象存储(如AWS S3、阿里云OSS)或分布式文件系统(如HDFS),存储成本远低于数据仓库;开放性。
2025-09-20 16:15:26
598
原创 提示系统用户理解慢?4个架构师的加速技巧
在LLM应用中,提示系统将用户的自然语言需求转化为模型可理解的结构化指令(即“提示”,Prompt);处理模型输出,以用户友好的方式呈现结果;收集用户反馈,迭代优化提示设计。与传统规则引擎(Rule Engine)不同,提示系统不依赖固定逻辑,而是通过自然语言交互实现灵活的需求映射。其边界可扩展至多模态(文本+图像+语音)、多轮交互(Proactive Dialogue)等场景。
2025-09-20 14:39:54
786
原创 数据预处理在大数据领域的应用模式与创新
我是张三,某大厂资深数据工程师,专注于大数据预处理和机器学习。我在知乎、公众号(“大数据干货铺”)分享过很多技术文章,欢迎关注。我的GitHub:https://github.com/zhangsan。欢迎在评论区分享你的预处理经验,或者提出问题,我会一一回复!下一篇文章,我们将讲解“大模型时代的数据预处理”——如何用GPT-4自动生成预处理脚本,敬请期待!
2025-09-20 13:11:03
440
原创 非结构化数据在医疗大数据中的应用
作为一名开发者、分析师或医疗从业者,无论你是刚刚起步,还是已有探索经验,我们都鼓励你深入学习相关技术(Python、NLP/CV库、数据治理知识),积极关注医疗专用模型和工具的发展(如MONAI、Hugging Face的医疗Transformer),最重要的是,通过本文,我们从理解什么是非结构化医疗数据及其价值,深入到处理这些数据的核心NLP和CV技术流程,再到其丰富的应用场景,并正视了伴随的巨大挑战(尤其是隐私与伦理)。这是一篇关于“非结构化数据在医疗大数据中的应用”的技术博客文章草稿,专为。
2025-09-20 11:33:52
349
原创 大数据数据服务中的地理位置处理技术
大数据环境下的地理位置处理,本质是用空间索引解决"快速检索",用分布式计算解决"海量数据",用流处理解决"低延迟"。如果你需要高并发的附近查询:选Elasticsearch + Geohash;如果你需要实时轨迹处理:选Flink + QuadTree;如果你需要复杂的空间分析:选PostGIS + TimescaleDB。最后,建议你动手实践——搭建一个小的LBS系统,用Elasticsearch存储POI数据,用Flink处理实时轨迹,用Leaflet展示结果。只有实践,才能真正掌握这些技术。
2025-09-20 09:56:41
808
原创 经验分享:华为架构师用AI智能体优化芯片设计的10个实用技巧
作为华为芯片架构团队的一员,我有幸参与过昇腾AI芯片、麒麟移动芯片等项目的设计优化。过去3年,我们团队将AI智能体技术深度融入芯片设计全流程,在RTL优化、物理设计、良率提升等环节积累了大量实战经验。本文将提炼其中10个最具落地价值的实用技巧,从问题场景、技术选型到工程实施,手把手带你掌握AI智能体在芯片设计中的应用精髓。设计空间探索(强化学习自适应探索);指标预测(多模态功耗预测);时序优化(智能迭代收敛);工艺适配(迁移学习跨工艺复用);良率提升(GNN缺陷预测);代码优化(LLM辅助生成)
2025-09-20 03:27:57
761
原创 大数据预测分析常见误区:这5个坑千万别踩
大数据预测分析是企业决策的“数字望远镜”,能帮我们从历史数据中洞察未来趋势。但现实中,很多团队投入大量资源构建的模型,却常常在实际应用中“翻车”:用脏数据得出荒谬结论、模型在测试集表现完美却无法推广、把相关性当因果关系导致决策失误……本文将揭示大数据预测分析中最常见的5个误区,用“做饭”“考试”“天气预报”等生活化比喻拆解复杂概念,结合代码示例、流程图和真实案例,告诉你如何避开这些“致命陷阱”。
2025-09-20 01:55:53
246
原创 智能虚拟活动管理系统:AI应用架构师的技术结晶之作
AI应用架构师的技术结晶,到底是什么?以解决业务痛点为核心:所有AI能力都要服务于“让主办方省时间”“让用户有收获”“让运营提效率”;架构设计的可扩展性:让系统能快速迭代(比如加新的AI模块、新的互动场景);技术与业务的深度融合:把AI从“附加功能”变成“核心流程”(比如活动创建时自动生成议程,而不是“手动填议程+AI辅助”)。通过本文的拆解,你应该能理解:一个智能虚拟活动系统,本质是**“业务模块+AI引擎+高可用架构”的组合**——业务模块是“骨架”,AI引擎是“灵魂”,高可用架构是“保障”。
2025-09-20 00:17:02
755
原创 提示系统访问控制的性能优化:架构师如何兼顾安全与响应速度?
在AI大模型时代,提示系统是用户与大模型之间的“翻译官”:它接收用户的自然语言请求(比如“写一篇关于量子计算的科普文”“生成一张猫咪的插画”),先做“预处理”(比如合规检查、权限验证、格式转换),再把“干净的提示”传给大模型。简单说,提示系统就是大模型的“前置门卫”——既要让合法用户快速进门,又要把恶意用户(比如发“生成违法内容”提示的人)挡在门外。import (// 用户信息ID string // 用户IDRole string // 角色:VIP/普通用户Age int // 年龄。
2025-09-19 22:41:30
581
原创 别让长上下文拖垮资源!提示工程架构师的截断与摘要优化法
截断的本质是“丢弃”,而摘要的本质是“压缩”——通过提取或生成关键信息,将长文本转化为短文本,同时保留核心意图。摘要分为**抽取式(Extractive)和生成式(Abstractive)**两类,各有优缺点。原理:通过算法(如TF-IDF、TextRank)计算句子的“重要性”,选择得分最高的Top N句子作为摘要。适用场景:需要高准确性的场景(如法律文档、医疗报告),不允许“编造”信息。实现代码(TextRank)"""抽取式摘要(TextRank算法)参数:text: 输入文本。
2025-09-19 19:32:24
835
原创 OLAP在大数据分析中的5大核心应用场景详解
日常交易:收银台的扫码系统(OLTP)帮你处理每一笔订单,确保“钱货两清”(高并发、低延迟);经营分析:你想知道“2023年第三季度,华北地区,饮料类产品的销量和利润变化”(需要从时间、地区、产品三个角度分析)。这时候,OLTP的收银系统就不够用了——它只能告诉你“某笔订单卖了什么”,却无法回答“哪些产品卖得好”。而OLAP就像你的“经营分析助手”,它把超市的所有交易数据整理成一个多维数据立方体(比如“时间×地区×产品×销量”),让你可以像“转动魔方”一样,从不同角度看数据。OLAP是什么。
2025-09-19 18:10:25
997
原创 AI艺术生成新探索:提示工程架构师如何设计可扩展提示系统?
本文将以"提示工程架构师"的视角,系统讲解可扩展提示系统的设计方法论。我们会从需求分析出发,拆解提示系统的核心组件,手把手带你实现从"零散提示词"到"模块化提示系统"的跃迁,最终掌握如何设计支持多场景、多团队、大规模生成的提示架构。作用:用模板语言定义提示词的固定结构,动态注入变量和模块。设计方法推荐使用Jinja2模板引擎(语法简洁,支持变量、条件判断、循环)。模板结构需遵循"信息分层原则",即核心信息在前,次要信息在后(AI模型通常对前半部分提示词更敏感)。示例:游戏角色设计的基础模板。
2025-09-19 16:38:27
950
原创 Doris与Redash集成:自助式大数据分析平台
你有没有过这样的经历?要查「近30天各渠道新用户留存率」,得先写需求文档→找数仓工程师排期→等Hive SQL跑2小时→结果出来发现维度错了→再改需求→再等2小时……等你拿到能用的数据时,运营活动都结束了。传统大数据分析的痛点,本质是「技术与业务的协作断层」:业务人员懂需求但不会查数据,技术人员会查数据但不懂需求,中间的沟通成本吃掉了80%的效率。而Doris(高性能OLAP引擎)+ Redash(开源自助分析工具)的组合,刚好补上了这个断层。
2025-09-19 15:16:29
800
原创 数据安全生命周期管理在大数据中的实现
异常IP尝试批量读取用户手机号。工程师迅速登录系统溯源——幸好,用户手机号已通过脱敏+AES加密存储,黑客拿到的只是一堆无法解密的乱码;更关键的是,系统通过访问行为审计第一时间拦截了非法请求。这不是运气,而是**数据安全生命周期管理(Data Security Lifecycle Management, DSLM)**的胜利。大数据时代,数据不再是“静态文件”,而是像“流动的血液”:从用户点击、物联网传感器、交易系统中产生,通过网络传输到数据湖,在Spark/Flink中计算,给算法模型使用。
2025-09-19 13:44:24
790
原创 大数据领域数据架构的实时处理技术应用
从“T+1”到“秒级响应”,实时处理的进化,本质是企业对“用户体验”的极致追求——当用户希望“下一个视频更合心意”“外卖更快送达”“支付更安全”时,实时数据架构就成了“必须的选择”。实时处理不是“技术问题”,而是“如何用技术连接用户需求”的问题。下一次,当你刷到一个“正好符合你兴趣”的短视频时,不妨想想:这背后,是实时数据架构在“悄悄”工作——而你,已经知道它的秘密了。
2025-09-19 12:07:11
1038
原创 《企业AI能力地图构建:AI应用架构师的实践指南全解》
很多人会把AI能力地图和“技术架构图”混淆——比如画个“算力层-数据层-模型层-应用层”的金字塔,就觉得是能力地图了。这是大错特错!真正的企业AI能力地图,核心是“能力”,而非“技术”。我们有什么AI能力?(比如“用户画像”“智能推荐”“库存预测”);这些能力能解决什么业务问题?(比如“用户画像”解决“推荐不准”的问题);这些能力如何协同?(比如“用户画像”输出给“智能推荐”,“智能推荐”的数据反馈给“库存预测”)。
2025-09-19 10:30:00
444
原创 2025企业数据治理体系升级:AI应用架构师不可错过的5大技术趋势
2025年,企业数据治理体系将迎来**“AI原生”升级**:AI技术不再是数据治理的“辅助工具”,而是成为数据治理体系的“核心引擎”。本文将为AI应用架构师拆解5大关键技术趋势,涵盖“自动数据治理”“数据与模型生命周期融合”“LLM智能助手”“联邦学习治理”“可观测性决策”等方向,帮助你理解这些趋势的技术内涵、应用场景与实践路径。自动数据治理是指通过AI技术(机器学习、深度学习、NLP等)实现数据治理流程的自动化。
2025-09-19 04:01:14
694
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人