POJ 3067 Japan(树状数组:求逆序)
http://poj.org/problem?id=3067
题意:
水平方向有2n个城市点,他们分别按顺序分布在平行的两条直线上,编号都是从1到n。然后现在在上直线与下直线的两个城市点之间建公路,一共建k条公路。问你这k条公路一共有多少个交点(保证最多只有两条公路会交于同一点)?
分析:
注意题目中两边的岛是这么分布的:
1 2 3 4
1 2 3 4
且一个点最多只有两条边相交,即不可能出现3线共点的情况.
假设现在1 4 是一条边,其他边我们暂时不知道,那么1 4边会有多少个交点呢? 这主要跟左边的1,2,3(蓝色的)这三个数分别延伸了多少条边有关,只要他们3点延伸的边的另一边的点序号>=1,那么该边必然会与边(1,4)交于1点。
所以我们将获得所有边以y坐标从小到大排序,如果y坐标相同,则x坐标小的排在前面。那么我们当前扫描到的xi,yi边有多少个交点?只要看xi前面有多少个xj(j<=i-1)是大于xi的就行。这就是xi的逆序数。
该题就转化为求排序后的x坐标的逆序数之和了。结果要用long long保存。
AC代码:360ms
<span style="font-size:18px;">#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN=1000;
const int MAXM=1000000+1000;
int c[MAXN+1];//c[0]是无效的
struct node
{
int x,y;
bool operator <(const node &b)const
{
return y<b.y||( y==b.y&&x<b.x );
}
}nodes[MAXM];
int lowbit(int x)
{
return x&(-x);
}
int sum(int x)
{
int res=0;
while(x>0)
{
res +=c[x];
x-=lowbit(x);
}
return res;
}
void add(int x,int v)
{
while(x<=MAXN)
{
c[x]+=v;
x+=lowbit(x);
}
}
int main()
{
int T,kase=1;
scanf("%d",&T);
while(T--)
{
int n,m,k;
scanf("%d%d%d",&n,&m,&k);
for(int i=0;i<k;i++)
scanf("%d%d",&nodes[i].x,&nodes[i].y);
sort(nodes,nodes+k);
memset(c,0,sizeof(c));
long long ans=0;
for(int i=0;i<k;i++)
{
ans += sum(MAXN)-sum(nodes[i].x);//累加逆序
add(nodes[i].x,1);
}
printf("Test case %d: %I64d\n",kase++,ans);
}
return 0;
}</span>