HDU 1878 欧拉回路(简单欧拉回路判定)
http://acm.hdu.edu.cn/showproblem.php?pid=1878
题意:
给你N个点和M条无向边,问你这个图是否存在欧拉回路.
分析:
无向图欧拉回路存在<==>图连通且所有点度为偶数
直接用并查集+degree处理即可.
AC代码:
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn=1000+10;
int n,m;
int degree[maxn];
int fa[maxn];
int findset(int i)
{
if(fa[i]==-1) return i;
return fa[i]=findset(fa[i]);
}
int main()
{
while(scanf("%d",&n)==1&&n)
{
scanf("%d",&m);
memset(degree,0,sizeof(degree));
memset(fa,-1,sizeof(degree));
for(int i=1;i<=m;i++)
{
int u,v;
scanf("%d%d",&u,&v);
degree[u]++;
degree[v]++;
u=findset(u), v=findset(v);
if(u!=v) fa[u]=v;
}
int cnt=0;//计数连通分量
for(int i=1;i<=n;i++)
if(findset(i)==i) cnt++;
if(cnt>1)
{
printf("0\n");
continue;
}
cnt=0;//计数奇数度的点
for(int i=1;i<=n;i++)
if(degree[i]%2==1) cnt++;
if(cnt!=0) printf("0\n");
else printf("1\n");
}
return 0;
}

本文解析了HDU1878题目,介绍了如何判断一个无向图是否存在欧拉回路的方法,并提供了AC代码实现。判定条件为:图必须连通且所有顶点度数为偶数。
3165

被折叠的 条评论
为什么被折叠?



