问题描述:
欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。
Output
每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。
样例输入:
3 3
1 2
1 3
2 3
3 2
1 2
2 3
0
样例输出:
1
0
思路分析:
-
判断是否是欧拉回路(图连通,有向图要求出度等于入度,无向图要求所有顶点为偶数度),首次判断是否是连通图,利用并查集。
-
当是连通图时判断是否顶点度为偶数
-
本题值得注意点的地方是当图中出现孤立点的时候也有可能成立。
解决方案:
#include "stdio.h"
#include "algorithm"
#include "string.h"
using namespace std;
const int N=1100;
int f[N],book[N],n;
void init()
{
int i;
for(i=1;i<N;i++)
f[i]=i;
memset(book,0,sizeof(book));
}
int find(int v)
{
if(f[v]==v)
return v;
else
return find(f[v]);
}
void merge(int u,int v)
{
int t1,t2;
t1=find(u);
t2=find(v);
if(t1!=t2)
{
f[t1]=t2;
}
}
int main ()
{
int ans,s,i,m;
while(~scanf("%d",&n)&&n!=0)
{
init();
scanf("%d",&m);
while(m--)
{
int x,y;
scanf("%d%d",&x,&y);
book[x]++;
book[y]++;
merge(x,y);
}
ans=0,s=0;
for(i=1;i<=n;i++)
{
if(book[i]%2==1)//tong ji jishu dian
{
s++;
break;
}
if(find(i)==i)//gen jie dian shu mu
ans++;
}
if(s==0&&ans==1)//没有奇数点,且只有一个根节点。
printf("1\n");
else
printf("0\n");
}
return 0;
}