欧拉回路的判断模板


问题描述:

欧拉回路是指不令笔离开纸面,可画过图中每条边仅一次,且可以回到起点的一条回路。现给定一个图,问是否存在欧拉回路?

Input

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是节点数N ( 1 < N < 1000 )和边数M;随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个节点的编号(节点从1到N编号)。当N为0时输入结
束。

Output

每个测试用例的输出占一行,若欧拉回路存在则输出1,否则输出0。


样例输入:

3 3
1 2
1 3
2 3
3 2
1 2
2 3
0


样例输出:

1
0


思路分析:

  1. 判断是否是欧拉回路(图连通,有向图要求出度等于入度,无向图要求所有顶点为偶数度),首次判断是否是连通图,利用并查集。

  2. 当是连通图时判断是否顶点度为偶数

  3. 本题值得注意点的地方是当图中出现孤立点的时候也有可能成立。


解决方案:

#include "stdio.h"
#include "algorithm"
#include "string.h"
using namespace std;
const int N=1100;
int f[N],book[N],n;
void init()
{	
	int i;
	for(i=1;i<N;i++)
	f[i]=i;
	memset(book,0,sizeof(book));
}
int find(int v)
{
	if(f[v]==v)
	return v;
	else
	return find(f[v]);
}
void merge(int u,int v)
{
	int t1,t2;
	t1=find(u);
	t2=find(v);
	if(t1!=t2)
	{
		f[t1]=t2;	
	}
}
int main ()
{
	int ans,s,i,m;
	while(~scanf("%d",&n)&&n!=0)
	{
		init();
		scanf("%d",&m);
		while(m--)
		{
			int x,y;
			scanf("%d%d",&x,&y);
			book[x]++;
			book[y]++;
			merge(x,y);
		}
		ans=0,s=0;
		for(i=1;i<=n;i++)
		{
			if(book[i]%2==1)//tong ji  jishu dian 
			{
			  s++;
			  break;	
			}
			if(find(i)==i)//gen jie dian shu mu
			ans++;
		}
    if(s==0&&ans==1)//没有奇数点,且只有一个根节点。 
    printf("1\n");
    else
    printf("0\n");  
 }
 return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值