POJ 3268 Silver Cow Party(Dijkstra)
http://poj.org/problem?id=3268
题意:
有N头牛要去参加牛X那里的聚会,现在除了X牛外,其他N-1头牛都要走到X牛那里去.给你M条有向边,现在问你任意一头牛从自己的位置走到X牛那,然后再走回来(来回都选择最短路径走)的话,需要的总时间的最大值是多少?即从所有N-1头牛中找那个最大的来回时间.
分析:
首先本题的有向图,所以从X点到其他所有点的最短距离就是所有牛回家需要走的路.
现在建立一个原图的方向边构成的图,该图中X点到其他所有点的最短距离 就是 所有牛出发到X点的最短距离.(想想是不是)
所以直接求出对应两者和的最大值即可.
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=1000+10;
struct Edge
{
int from,to,dist;
Edge(int f,int t,int d):from(f),to(t),dist(d){}
};
struct HeapNode
{
int d,u;
HeapNode(int d,int u):d(d),u(u){}
bool operator <(const HeapNode& rhs)const
{
return d> rhs.d;
}
};
struct Dijkstra
{
int n,m;
vector<Edge> edges;
vector<int> G[maxn];
bool done[maxn];
int d[maxn];
void init(int n)
{
this->n=n;
for(int i=0;i<n;i++) G[i].clear();
edges.clear();
}
void AddEdge(int from,int to,int dist)
{
edges.push_back(Edge(from,to,dist) );
m=edges.size();
G[from].push_back(m-1);
}
void dijkstra(int s)
{
priority_queue<HeapNode> Q;
for(int i=0;i<n;i++) d[i]=1e8;
d[s]=0;
memset(done,0,sizeof(done));
Q.push(HeapNode(0,s));
while(!Q.empty())
{
HeapNode x=Q.top(); Q.pop();
int u = x.u;
if(done[u]) continue;
done[u]=true;
for(int i=0;i<G[u].size();i++)
{
Edge &e=edges[G[u][i]];
if(d[e.to] > d[u]+e.dist)
{
d[e.to] = d[u]+e.dist;
Q.push(HeapNode(d[e.to],e.to));
}
}
}
}
}DJ_1,DJ_2;//DJ_1代表原图,DJ_2表反向边构成的图
int main()
{
int n,m,x;
scanf("%d%d%d",&n,&m,&x);
x--;
DJ_1.init(n);
DJ_2.init(n);
while(m--)
{
int u,v,d;
scanf("%d%d%d",&u,&v,&d);
u--,v--;
DJ_1.AddEdge(u,v,d);
DJ_2.AddEdge(v,u,d);
}
DJ_1.dijkstra(x);
DJ_2.dijkstra(x);
int max_val=-1;
for(int i=0;i<n;i++)if(i!=x)
{
max_val = max(max_val, DJ_1.d[i]+DJ_2.d[i]);
}
printf("%d\n",max_val);
return 0;
}