POJ 1847 Tram(Floyd)
http://poj.org/problem?id=1847
题意:
一张图中,每个结点一开始都指向了一个相邻点。可以改变每个点指向的点。求一条从A到B的路,使用最少改变路上点的指向的次数,若不存在输出-1。
分析:
i指向j,则dist[i][j] = 0。
若i能通过改变方向指向j的话, dist[i][j]=1。
否则dist[i][j]=INF。
现在问题是我们走轨道从A到B的时候,整个图是在变的,而最短路径算法求得都是静态图的最短路径,这样做是不是有问题?没有,因为对于任意一个节点,我们如果走到该节点一次的话,就不会在走上去了。所以我们对于每个节点最多只走一次。所以可以作为静态图来解。(想想是不是)
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#define INF 1e9
using namespace std;
const int maxn= 100+10;
int n,a,b;
int d[maxn][maxn];
int main()
{
while(scanf("%d%d%d",&n,&a,&b)==3)
{
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j] = i==j?0:INF;
for(int i=1;i<=n;i++)
{
int k,u;
scanf("%d",&k);
for(int j=1;j<=k;j++)
{
scanf("%d",&u);
if(j==1) d[i][u]=0;
else d[i][u]=1;
}
}
for(int k=1;k<=n;k++)
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
d[i][j] = min(d[i][j],d[i][k]+d[k][j]);
printf("%d\n",d[a][b]==INF?-1:d[a][b]);
}
return 0;
}

本文介绍了解决 POJ1847 Tram 问题的方法,利用 Floyd 算法求解从 A 到 B 的路径上,最少需要改变几次指向以达到目标点。通过构建动态图并进行最短路径计算,实现了一个有效的解决方案。
613

被折叠的 条评论
为什么被折叠?



