HDU 4619 Warm up 2 (二分图最小覆盖集)
http://acm.hdu.edu.cn/showproblem.php?pid=4619
题意:
给你两种纸牌 ,一种水平放置共有n张,一种竖直放置共有m张,他们被放在一个无限大的网格平面上。水平放置的纸牌占据点(x, y)和(x + 1 , y) , 竖直放置的纸牌占据点(x , y) 和 (x , y + 1)。水平放置的牌之间不会重叠,竖直放置的牌之间也不会重叠,但是水平放置的牌和竖直放置的牌之间可能会重叠。让你拿走一些牌,使剩下的牌之间不会重叠并且数量最多,输出剩余的最大牌数。
分析:
我们把所有水平的骨牌放到二分图左点集,竖直骨牌放在二分图右点集. 如果左(水平)骨牌i与右(竖直)骨牌j有重叠部分,那么就在左i与右j之间连一条无向边.注意:一个坐标最多只有2个骨牌重叠,且这两个骨牌一定一个是水平的另一个是竖直的. 所以新的二分图中每条边都代表了一个重叠的坐标位置.我们必须在每个重叠的位置上选择拿掉水平骨牌或是竖直骨牌来使得所有骨牌不重叠.(其实就是在二分图的左边或右边选每条边的端点抛弃).
为了使得剩下的骨牌最多,我们移除的重叠骨牌必须最少,那么这个问题就是求二分图的最小覆盖集.(想想是不是)
最终n+m-最小覆盖集数= 剩下的骨牌最大数目.
AC代码:
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int maxn = 1000+10;
struct Max_Match
{
int n,m;
vector<int> g[maxn];
bool vis[maxn];
int left[maxn];
void init(int n,int m)
{
this->n=n;
this->m=m;
for(int i=1;i<=n;i++) g[i].clear();
memset(left,-1,sizeof(left));
}
bool match(int u)
{
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!vis[v])
{
vis[v]=true;
if(left[v]==-1 || match(left[v]))
{
left[v]=u;
return true;
}
}
}
return false;
}
int solve()
{
int ans=0;
for(int i=1;i<=n;i++)
{
memset(vis,0,sizeof(vis));
if(match(i)) ans++;
}
return ans;
}
}MM;
struct Node
{
int x1,y1;
int x2,y2;
Node(){}
Node(int x1,int y1,int x2,int y2):x1(x1),y1(y1),x2(x2),y2(y2){}
bool overlap(Node& rhs)//判断是否重叠
{
if(x1==rhs.x1 && y1==rhs.y1) return true;
else if(x1==rhs.x2 && y1==rhs.y2) return true;
else if(x2==rhs.x1 && y2==rhs.y1) return true;
else if(x2==rhs.x2 && y2==rhs.y2) return true;
return false;
}
}node1[maxn],node2[maxn];
int main()
{
int n,m;
while(scanf("%d%d",&n,&m)==2 && n)
{
MM.init(n,m);
for(int i=1;i<=n;i++)
{
int x,y;
scanf("%d%d",&x,&y);
node1[i]=Node(x,y,x+1,y);
}
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
node2[i]=Node(x,y,x,y+1);
}
for(int i=1;i<=n;i++)
for(int j=1;j<=m;j++)
if(node1[i].overlap(node2[j]))
MM.g[i].push_back(j);
printf("%d\n",n+m-MM.solve());
}
return 0;
}

本文探讨了使用二分图最小覆盖集解决问题的方法,具体应用于骨牌覆盖场景,通过构建二分图并寻找最小覆盖集,实现骨牌的最优选择,确保覆盖效果的同时最大化骨牌数量。
8万+

被折叠的 条评论
为什么被折叠?



