HDU 3722 Card Game(二分图最优匹配)
http://acm.hdu.edu.cn/showproblem.php?pid=3722
题意:
给出n个字符串,其中任意两个字符串(包括同一字符串)可以进行互相拼接起来,例如s1="abcd"……>s2="dcab",表示将s1拼接在s2后面,所得的值就是将s1反转得"dcba",该字符串与s2同有的前缀为"dc",所以值就是2.现在求解在n个字符串给定的情况下,将这些字符串拼接成1哥或多个不相交的环所得到的最大值.
分析:
如果将S[i]连接到S[j]后面能得到x分数,那么就连一条i到j的权值为x的有向边.最终我们能得到一个有向图.我们要求的是是否存在不相交的多个有向环正好覆盖了该有向图的N个点且这些环的权值和最小? (其实本题就是HDU1853的修改版,只不过需要我们自己建图而已:http://blog.csdn.net/u013480600/article/details/38760767)
建立二分图:左右点集都是1到n个数字,代表1到n的字符串编号. 如果将S[i]连接到S[j]后面能得到x分数,那么就连一条左i与右j的权值为x的边.
最终用KM算法求得的最优匹配权值就是可能获得的最大分数.(具体二分图实现正确性证明部分请看HDU1853的分析)
注意:本题能存在自环,但是自环的权值恒为0.
AC代码:
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<string>
#include<iostream>
using namespace std;
const int maxn=200+10;
struct Max_Match
{
int n,W[maxn][maxn];
int Lx[maxn],Ly[maxn];
bool S[maxn],T[maxn];
int left[maxn];
bool match(int i)
{
S[i]=true;
for(int j=1;j<=n;j++)if(Lx[i]+Ly[j]==W[i][j] && !T[j])
{
T[j]=true;
if(left[j]==-1 || match(left[j]))
{
left[j]=i;
return true;
}
}
return false;
}
void update()
{
int a=1<<30;
for(int i=1;i<=n;i++)if(S[i])
for(int j=1;j<=n;j++)if(!T[j])
a=min(a,Lx[i]+Ly[j]-W[i][j]);
for(int i=1;i<=n;i++)
{
if(S[i]) Lx[i] -=a;
if(T[i]) Ly[i] +=a;
}
}
int solve(int n)
{
this->n=n;
memset(left,-1,sizeof(left));
for(int i=1;i<=n;i++)
{
Lx[i]=Ly[i]=0;
for(int j=1;j<=n;j++)
Lx[i]=max(Lx[i],W[i][j]);
}
for(int i=1;i<=n;i++)
{
while(true)
{
for(int j=1;j<=n;j++) S[j]=T[j]=false;
if(match(i)) break;
else update();
}
}
int ans=0;
for(int i=1;i<=n;i++) ans+= W[left[i]][i];
return ans;
}
}KM;
int get_score(string& s1,string& s2)//将s1连到s2后面所能得到的分数
{
int ans=0;
for(unsigned int i=0;i<s1.size()&&i<s2.size();i++)
{
if(s1[i]==s2[s2.size()-1-i]) ++ans;
else return ans;
}
return ans;
}
int main()
{
int n;
while(scanf("%d",&n)==1)
{
string s[maxn];
for(int i=1;i<=n;i++)
cin>>s[i];
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
KM.W[i][j]= i==j?0:get_score(s[i],s[j]);//注意:自环权值为0
printf("%d\n",KM.solve(n));
}
return 0;
}