关闭

NYOJ 461-Fibonacci数列(四)(求斐波那契数列前4位)

标签: 斐波那契数列数学
738人阅读 评论(0) 收藏 举报
分类:

题目地址:NYOJ 461

思路:斐波那契数列的通项公式为

然后下一步考虑如何产生前4位:

先看对数的性质,loga(b^c)=c*loga(b),loga(b*c)=loga(b)+loga(c);假设给出一个数10234432,
那么log10(10234432)=log10(1.0234432*10^7)【用科学记数法表示这个数】=log10(1.0234432)+7;
log10(1.0234432)就是log10(10234432)的小数部分.
log10(1.0234432)=0.010063744(取对数所产生的数一定是个小数)
再取一次幂:10^0.010063744=1.023443198,然后减去整数部分,剩下的就是小数部分,让取前4位,只需要将小数部分*1000就好了。

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <set>
#include <queue>
#include <stack>
#include <map>
using namespace std;
typedef long long LL;
const int inf=0x3f3f3f3f;
const double pi= acos(-1.0);
const double esp=1e-6;
int f[30]={0,1,1};
int main()
{
    int n,i;
    double ans;
    int res;
    for(i=3;i<=20;i++)
        f[i]=f[i-1]+f[i-2];
    while(~scanf("%d",&n)){
        double a=(1.0+sqrt(5.0))/2.0;
        if(n<=20)
            printf("%d\n",f[n]);
        else{
            ans=n*log10(a)-0.5*log10(5.0);
            ans=ans-floor(ans);
            ans=pow(10,ans);
            res=(int)(ans*1000);
            printf("%d\n",res);
        }
    }
    return 0;
}



1
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:286582次
    • 积分:7887
    • 等级:
    • 排名:第2611名
    • 原创:496篇
    • 转载:11篇
    • 译文:0篇
    • 评论:47条
    最新评论