自定义jsp标签

1.新建一个类继承自TagSupport、BodyTagSupport或实现Tag接口

//对应一个jsp标签
public class MyTag extends TagSupport {
    private JspWriter writer = null;
  //对应到jsp标签的属性
    private String showMsg;
   //遇到<调用
   //合法返回值EVAL_BODY_INCLUDE(显示标签体内容)与SKIP_BODY(不显示标签体内容)
    @Override
    public int doStartTag() throws JspException {
        return super.doStartTag();
    }
  //遇到>调用
  //合法返回值EVAL_PAGE(继续处理后续标签)与SKIP_PAGE(不处理后续表情)
    @Override
    public int doEndTag() throws JspException {
    //获得PageContext对象
        writer = this.pageContext.getOut();
        try{
            writer.write(showMeg);
        }catch (IOException ie){
            ie.printStackTrace();
        }
        return super.doEndTag();
    }
  //必须提供setter方法
    public void setShowMsg(String showMeg) {
        this.showMeg = showMeg;
    }
}
  1. 新建一个myxxx.tld文件,放于WEB-INF目录/其子目录下,用于映射关系
<?xml version="1.0" encoding="ISO-8859-1"?>

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
        xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
        xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-jsptaglibrary_2_1.xsd"
        version="2.1">

    <tlib-version>1.0</tlib-version>
    <short-name>myshortname</short-name>
    <uri>http://mycompany.com</uri>
    <!--加入自定义标签的定义-->
    <tag>
        <name>my1</name>
        <tag-class>tag.MyTag</tag-class>
        <body-content>JSP</body-content>
        <attribute>
            <name>showMsg</name>
       <!--配置是否必须-->
            <required>true</required>
        </attribute>
    </tag>

</taglib>
  1. 在web.xml文件中配置标签库uri
<jsp-config>
        <taglib>
            <taglib-uri>http://mycompany.com</taglib-uri>
            <taglib-location>/WEB-INF/mytag.tld</taglib-location>
        </taglib>
</jsp-config>
  1. 使用:引入taglib,然后中,pre为标签库,showMsg对应到自定义类,value为自定义类的实例域。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值