POJ 2533 Longest Ordered Subsequence

最长上升子序列DP算法
本文介绍了一种解决最长上升子序列问题的经典动态规划方法,并提供了详细的C++实现代码。通过构建递推方程,该算法能有效地找到给定序列中最长的上升子序列。

题目链接:http://poj.org/problem?id=2533

最长上升子序列,经典题目。

以dp[i]表示以a[i]为序列结尾的最长上升子序列长度

则 递推方程:dp[i] = max(dp[k]+1)  for everya[k]<a[i] && k<i

代码:

#include <iostream>
#include <cstdio>

using namespace std;
int max(int a,int b)
{
    return a>b?a:b;
}
int num[1111];
int dp[1111];
int main()
{
    int n;
    int ans=0;
    scanf("%d",&n);
    for(int i=0;i<n;i++)
        scanf("%d",&num[i]);
    for(int i=0;i<=n;i++)
    {
        dp[i]=1;
        for(int j=0;j<i;j++)
        {
            if(num[j]<num[i])
            {
                dp[i]=max(dp[i],dp[j]+1);
            }
        }
        ans=max(ans,max(dp[i],dp[i-1]));
    }
    printf("%d\n",ans);
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值