题目链接:http://poj.org/problem?id=2533
最长上升子序列,经典题目。
以dp[i]表示以a[i]为序列结尾的最长上升子序列长度
则 递推方程:dp[i] = max(dp[k]+1) for everya[k]<a[i] && k<i
代码:
#include <iostream>
#include <cstdio>
using namespace std;
int max(int a,int b)
{
return a>b?a:b;
}
int num[1111];
int dp[1111];
int main()
{
int n;
int ans=0;
scanf("%d",&n);
for(int i=0;i<n;i++)
scanf("%d",&num[i]);
for(int i=0;i<=n;i++)
{
dp[i]=1;
for(int j=0;j<i;j++)
{
if(num[j]<num[i])
{
dp[i]=max(dp[i],dp[j]+1);
}
}
ans=max(ans,max(dp[i],dp[i-1]));
}
printf("%d\n",ans);
return 0;
}
最长上升子序列DP算法

本文介绍了一种解决最长上升子序列问题的经典动态规划方法,并提供了详细的C++实现代码。通过构建递推方程,该算法能有效地找到给定序列中最长的上升子序列。
2095

被折叠的 条评论
为什么被折叠?



