Longest Ordered Subsequence Time Limit: 2000ms Memory limit: 65536kB 题目描述 A numeric sequence of ai is ordered if a1 < a2 < ... < aN. Let the subsequence of the given numeric sequence (a1, a2, ..., aN) be any sequence (ai1, ai2, ..., aiK), where 1 <= i1 < i2 < ... < iK <= N. For example, sequence (1, 7, 3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8). Your program, when given the numeric sequence, must find the length of its longest ordered subsequence. 输入 The first line of input file contains the length of sequence N. The second line contains the elements of sequence - N integers in the range from 0 to 10000 each, separated by spaces. 1 <= N <= 1000 输出 Output file must contain a single integer - the length of the longest ordered subsequence of the given sequence. 样例输入 7 1 7 3 5 9 4 8 样例输出 4 #include
using namespace std; int dp[1005],a[1005]; int main() { int n; while(cin>>n) { for(int i=0;i
>a[i]; for(int i=0;i
a[j]&&dp[i]
maxn) maxn=dp[i]; cout<
<
2533 Longest Ordered Subsequence
最新推荐文章于 2022-08-30 19:25:01 发布