数据分析与数据挖掘在常规工作中的应用——数据异常值

原创 2017年01月03日 22:17:49


版权声明:本文为博主原创文章,未经博主允许不得转载。

数据挖掘数据预处理之:异常值检测

爱数据点评:   在数据挖掘中,数据预处理占据了数据挖掘大数据的时间。同时数据预处理过程的好坏,也直接决定了后续数据挖掘模型的预测效果和实用性。这其中很重要一个方面是对于异常数据的识别,因为异常数据...
  • mousever
  • mousever
  • 2016年01月05日 13:16
  • 4331

【数据挖掘】异常检测

简介 异常检测的基本思想:若发生了小概率事件,就认为出现了异常。 常用的异常检测方法是利用高斯密度函数,计算数据出现的概率,如果发现了概率小于某个阈值的数据,就认为该数据是异常的。 异常检测也是...
  • evillist
  • evillist
  • 2017年03月13日 22:28
  • 1800

使用excel进行数据挖掘(4)---- 突出显示异常值

本文使用excel演示数据挖掘中的异常值突出检测功能。
  • xinxing__8185
  • xinxing__8185
  • 2015年07月06日 08:52
  • 2705

数据预处理之异常值处理

异常值,即在数据集中存在不合理的值,又称离群点。比如年龄为-1,笔记本电脑重量为1吨等,都属于异常值的范围。从集合角度来看,异常值即离群点...
  • xzfreewind
  • xzfreewind
  • 2017年08月09日 19:53
  • 362

数据挖掘中的异常检测

数据挖掘中异常检测 最近在做聚类,是利用出租车上车下车地点信息聚类商圈和生活区域,在实战过程中,遇到了很多问题 其一:聚类中心点的确定,我们聚类结果要返回一个经纬度信息,或者说这是一个商圈的中心地...
  • sinat_33179560
  • sinat_33179560
  • 2017年03月22日 12:03
  • 437

数据预处理—剔除异常值,平滑处理,标准化(归一化)

数据预处理的主要任务如下: (1)数据清理:填写空缺值,平滑噪声数据,识别,删除孤立点,解决不一致性 (2)数据集成:集成多个数据库,数据立方体,文件 (3)数据变换:规范化(消除冗余属性)和聚...
  • HHTNAN
  • HHTNAN
  • 2017年03月06日 10:13
  • 3610

数据挖掘-数据探索

数据探索         根据观测、调查收集到初步的样本数据集后,接下来要考虑的问题是:样本数据集的数量和质量是否满足模型构建的要求?有没有出现从未设想过的数据状态?其中有没有什么明显的规律和趋势?...
  • u013153546
  • u013153546
  • 2016年04月27日 21:35
  • 1805

异常值(outlier)的判别与剔除

转载点击打开链接 在处理实验数据的时候,我们常常会遇到个别数据值偏离预期或大量统计数据值结果的情况,如果我们把这些数据值和正常数据值放在一起进行统计,可能会影响实验结果的正确性,如果把这些数据值简...
  • wenyiming1991
  • wenyiming1991
  • 2015年09月12日 23:42
  • 1723

【转】R语言异常检测处理

看到一篇干货,感谢作者以及分享者,现与大家分享,转自http://youhaolin.blog.163.com/blog/static/224494120201422110628586/ 本文结...
  • ASSaSSINangJIE
  • ASSaSSINangJIE
  • 2016年08月04日 20:20
  • 561

Python-异常值分析

异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视异常值的出现,分析其产生的原因,常常成为...
  • zpDreamer
  • zpDreamer
  • 2017年01月05日 17:46
  • 4412
内容举报
返回顶部
收藏助手
不良信息举报
您举报文章:数据分析与数据挖掘在常规工作中的应用——数据异常值
举报原因:
原因补充:

(最多只允许输入30个字)