NTP服务放大攻击的解决办法 转载:什么是NTP服务?网络时间协议NTP(Network Time Protocol)是用于互联网中时间同步的标准互联网协议。NTP服务器通过NTP服务向网络上的计算机或其他设备提供标准的授时服务,以保证这些服务系统的时钟能够同步。通常NTP服务使用UDP 123端口提供标准服务。什么是NTP服务放大攻击?标准NTP 服务提供了一个 monlist查询功能,也被称为MON_GETLIST,该功能主
在windows上使用_netrc文件让Git记住用户名和密码 场景使用ssh因为网络策略问题无法访问git@github.com使用https作为remote origin缺点明文存储实现定义一个用户环境变量%HOME%, 值为%USERPROFILE%在%HOME%路径下新建一个文件_netrc在_netrc文件中增加下面的配置machine github.comlogin cnblogs_userpassword cnblogs_pwd
windows下GitHub的SSH key配置 生成SSH密钥 并 添加公共密钥到GitHub上的帐户设置GitHub的user name和emailgit config --global user.name "Git账号"git config --global user.email "Git邮箱"生成一个新的SSH密钥打开 Git Bash,输入如下命令,然后连续按三个回车即可: ssh-keygen -t rsa -C “your_ema
Python元类编程——with_metaclass 最近刚接触python的元类,网络上有比较详细的介绍,这里是在看Django时候发现一点关于元类的应用,做个笔记。from django.utils import sixclass A(type): def __new__(cls, name, parents, attrs): return type.__new__(cls, name, parents, attrs)cl
Python: 捕获异常然后再抛出另一个异常的正确姿势 转载:https://mozillazg.github.io/2016/08/python-the-right-way-to-catch-exception-then-reraise-another-exception.html一般大家实现捕获异常然后再抛出另一个异常的方法是下面这样的:def div(): 2 / 0try: div()except ZeroDivisionErr
python获取登录验证码 根据sessionId下载验证码,通过人工方式识别import urllib2def get_captcha(captchaUrl, sessionIdKey, sessionIdValue): """获得验证码图片 通过fiddler分析验证码请求时需要携带的cookie,通常验证码是与某个sessionid绑定的 Args: captchaUrl: 验证码地
MySQL高可用方案选型参考 转载:http://imysql.com/2015/09/14/solutions-of-mysql-ha.shtml可选MySQL高可用方案MySQL的各种高可用方案,大多是基于以下几种基础来部署的:基于主从复制;基于Galera协议;基于NDB引擎;基于中间件/proxy;基于共享存储;基于主机高可用;在这些可选项中,最常见的就是基于主从复制的方案,其次是基于Galera的方案,我
来自 Google 的高可用架构理念与实践 来自 Google 的高可用架构理念与实践孙宇聪,CTO @ coding.net 。2007 - 2015 年初在 Google 的 Moutain View 担任 SRE 职位。 参与了 Google 的两个项目:第一个是 Youtube,工作内容涵盖 Video transfer、Coding、Streaming、Global CDN 等;第二个是 Google Cloud Platform
Excel清除一个单元格的第一个字符 解决导出的文件中超长整型显示的问题处理csv文件超长整型在excel中默认使用科学技术法显示,为了使得导出的csv文件可以以字符串的格式显示在Excel中csvn文件内容如下,在字符串的前面加上一个单引号问题单号'2016010113440210231'2016010113440210231'2016010113440210231'2016010113440210231Excel打开CSV文
Linux下ps查找进程用kill终止命令 方法一kill -9 `ps -ef |grep xxx|awk '{print $2}' ` 方法二p·s -ef | grep xxx | grep -v root | awk '{print $2}' | xargs kill -9
MySQL—函数—GROUP_CONCAT 定义将组中该字段的所有值都连接成一个字符串这个函数在 MySQL 4.1 中被加入。GROUP_CONCAT([DISTINCT] expr [,expr ...] [ORDER BY {unsigned_integer | col_name | expr} [ASC | DESC] [,col_name ...]]
快学数据挖掘—数据探索—相关分析 相关关系图示散点图矩阵需要同时考察多个变量间的相关关系时,一一绘制它们间的简单散点图会十分麻烦。此时可利用散点图矩阵来同时绘制各变量间的散点图,从而快速发现多个变量间的主要相关性,这在进行多元线性回归时显得尤为重要。线性相关性指标catering_sale_all.xls数据集下载地址 日期 百合酱蒸凤爪 翡翠蒸香茜饺 金银蒜汁蒸排骨 乐膳真
快学数据挖掘—数据探索—贡献度分析 贡献度分析贡献度分析又称帕累托分析,它的原理是帕累托法则又称20/80定律。同样的投入放在不同的地方会产生不同的效益。例如,对一个公司来讲,80%的利润常常来自于20%最畅销的产品,而其他80%的产品只产生了20%的利润。帕累托图帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。它是将出现的质量问题和质量改进项目按照
快学数据挖掘—数据探索—分布分析和统计量分析 分布分析揭示数据的分布特征和分布类型定量数据:频率分析、频率分布表、直方图、茎叶图定性数据:饼图、条形图统计量分析用统计学指标对定量数据进行描述性分析,例如均值,中位数,众数;极差,标准差,四分位数间距等。定量数据的分布分析下面使用SPSS进行频率分析,分析菜品捞起生鱼片在2014年第二个季度的销售数据,绘制销售量的频率分布图,对销售量进行分布分析。
快学数据挖掘—数据探索—异常值分析 缺失值分析缺失值产生的原因有些信息暂时无法获取,或者获取信息的代价太大。有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障等非人为原因而丢失。属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固
SPSS——相关分析——偏相关(Partial)分析 简介某一个要素对另一个要素的影响或相关程度时,把其他要素的影响视为常数,即暂不考虑其他要素的影响,而单独研究那两个要素之间的 相互关系的密切程度时,称为偏相关。在排除了其他变量的影响情况下再计算两变量的(简单)相关系数数学模型 偏相关系数的检验参数设置数据源 health_funding.sav散点图结果分析Health care funding和Reported diseases 的零阶相关
SPSS——相关分析——Kendall秩相关系数 简介在统计学中,肯德尔相关系数是以Maurice Kendall命名的,并经常用希腊字母τ(tau)表示其值。肯德尔相关系数是一个用来测量两个随机变量相关性的统计值。一个肯德尔检验是一个无参数假设检验,它使用计算而得的相关系数去检验两个随机变量的统计依赖性。肯德尔相关系数的取值范围在-1到1之间,当τ为1时,表示两个随机变量拥有一致的等级相关性;当τ为-1时,表示两个随机变量拥有完全相反的等级相关性
SPSS——相关分析——Spearman秩相关系数 简介斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)主要用于解决称名数据和顺序数据相关的问题。适用于两列变量,而且具有等级变量性质具有线性关系的资料。由英国心理学家、统计学家斯皮尔曼根据积差相关的概念推导而来,一些人把斯皮尔曼等级相关看做积差相关的特殊形式。Spearman秩相关系数是一个非参数性质(与分布无关)的秩统计参数,由
SPSS——相关分析——Pearson简单相关系数 简介相关分析属于数据分析流程前端的探索性分析,探究变量间关系及性质,其结果在于指导下一步采取何种方法,是数据挖掘之前的基础工作;场景相关分析之前,有必要搞清楚变量的类型,根据具体类型选择合适的相关系数。Pearson相关系数适用于两变量的度量水平都是尺度数据,并且两变量的总体是正态分布或者近似正态分布的情况,还有说法认为其样本量应大于30,可供参考,在这些条件之外的,考虑选择spearman系数或者
SPSS——非参数检验——K Related Independe sample K个相关样本检验 简介用于在总体分布未知的情况下检验多个相关样本是否来自于相同分布的总体检验方法Friedman双向评秩方差检验 与Kruskal-Wallis H检验的思路相似,不过还考虑到区组的影响。首先对所有样本合并并按升序排列,然后求各观测量在各自行中的秩,然后对各组样本求平均秩和秩和。如果平均秩或秩和相差很大,则认为两组样本所属的总体有显著差异Kendall’W 协同系数检验 其思想是考察多