- 博客(171)
- 资源 (1)
- 收藏
- 关注
转载 NTP服务放大攻击的解决办法
转载:什么是NTP服务?网络时间协议NTP(Network Time Protocol)是用于互联网中时间同步的标准互联网协议。NTP服务器通过NTP服务向网络上的计算机或其他设备提供标准的授时服务,以保证这些服务系统的时钟能够同步。通常NTP服务使用UDP 123端口提供标准服务。什么是NTP服务放大攻击?标准NTP 服务提供了一个 monlist查询功能,也被称为MON_GETLIST,该功能主
2017-04-13 14:34:17
6891
1
原创 在windows上使用_netrc文件让Git记住用户名和密码
场景使用ssh因为网络策略问题无法访问git@github.com使用https作为remote origin缺点明文存储实现定义一个用户环境变量%HOME%, 值为%USERPROFILE%在%HOME%路径下新建一个文件_netrc在_netrc文件中增加下面的配置machine github.comlogin cnblogs_userpassword cnblogs_pwd
2017-04-11 14:41:53
6243
1
原创 windows下GitHub的SSH key配置
生成SSH密钥 并 添加公共密钥到GitHub上的帐户设置GitHub的user name和emailgit config --global user.name "Git账号"git config --global user.email "Git邮箱"生成一个新的SSH密钥打开 Git Bash,输入如下命令,然后连续按三个回车即可: ssh-keygen -t rsa -C “your_ema
2017-04-10 22:11:44
2194
原创 Python元类编程——with_metaclass
最近刚接触python的元类,网络上有比较详细的介绍,这里是在看Django时候发现一点关于元类的应用,做个笔记。from django.utils import sixclass A(type): def __new__(cls, name, parents, attrs): return type.__new__(cls, name, parents, attrs)cl
2017-04-07 18:52:09
6445
转载 Python: 捕获异常然后再抛出另一个异常的正确姿势
转载:https://mozillazg.github.io/2016/08/python-the-right-way-to-catch-exception-then-reraise-another-exception.html一般大家实现捕获异常然后再抛出另一个异常的方法是下面这样的:def div(): 2 / 0try: div()except ZeroDivisionErr
2017-04-07 11:37:51
15833
原创 python获取登录验证码
根据sessionId下载验证码,通过人工方式识别import urllib2def get_captcha(captchaUrl, sessionIdKey, sessionIdValue): """获得验证码图片 通过fiddler分析验证码请求时需要携带的cookie,通常验证码是与某个sessionid绑定的 Args: captchaUrl: 验证码地
2017-04-07 10:41:23
5940
转载 MySQL高可用方案选型参考
转载:http://imysql.com/2015/09/14/solutions-of-mysql-ha.shtml可选MySQL高可用方案MySQL的各种高可用方案,大多是基于以下几种基础来部署的:基于主从复制;基于Galera协议;基于NDB引擎;基于中间件/proxy;基于共享存储;基于主机高可用;在这些可选项中,最常见的就是基于主从复制的方案,其次是基于Galera的方案,我
2017-04-05 21:27:03
510
转载 来自 Google 的高可用架构理念与实践
来自 Google 的高可用架构理念与实践孙宇聪,CTO @ coding.net 。2007 - 2015 年初在 Google 的 Moutain View 担任 SRE 职位。 参与了 Google 的两个项目:第一个是 Youtube,工作内容涵盖 Video transfer、Coding、Streaming、Global CDN 等;第二个是 Google Cloud Platform
2017-04-05 21:10:53
579
原创 Excel清除一个单元格的第一个字符
解决导出的文件中超长整型显示的问题处理csv文件超长整型在excel中默认使用科学技术法显示,为了使得导出的csv文件可以以字符串的格式显示在Excel中csvn文件内容如下,在字符串的前面加上一个单引号问题单号'2016010113440210231'2016010113440210231'2016010113440210231'2016010113440210231Excel打开CSV文
2017-03-22 11:02:11
9159
原创 Linux下ps查找进程用kill终止命令
方法一kill -9 `ps -ef |grep xxx|awk '{print $2}' ` 方法二p·s -ef | grep xxx | grep -v root | awk '{print $2}' | xargs kill -9
2017-03-21 19:31:47
797
原创 MySQL—函数—GROUP_CONCAT
定义将组中该字段的所有值都连接成一个字符串这个函数在 MySQL 4.1 中被加入。GROUP_CONCAT([DISTINCT] expr [,expr ...] [ORDER BY {unsigned_integer | col_name | expr} [ASC | DESC] [,col_name ...]]
2017-03-13 22:15:00
356
原创 快学数据挖掘—数据探索—相关分析
相关关系图示散点图矩阵需要同时考察多个变量间的相关关系时,一一绘制它们间的简单散点图会十分麻烦。此时可利用散点图矩阵来同时绘制各变量间的散点图,从而快速发现多个变量间的主要相关性,这在进行多元线性回归时显得尤为重要。线性相关性指标catering_sale_all.xls数据集下载地址 日期 百合酱蒸凤爪 翡翠蒸香茜饺 金银蒜汁蒸排骨 乐膳真
2016-12-30 20:47:44
572
原创 快学数据挖掘—数据探索—贡献度分析
贡献度分析贡献度分析又称帕累托分析,它的原理是帕累托法则又称20/80定律。同样的投入放在不同的地方会产生不同的效益。例如,对一个公司来讲,80%的利润常常来自于20%最畅销的产品,而其他80%的产品只产生了20%的利润。帕累托图帕累托图又叫排列图、主次图,是按照发生频率大小顺序绘制的直方图,表示有多少结果是由已确认类型或范畴的原因所造成。它是将出现的质量问题和质量改进项目按照
2016-12-30 00:03:35
5125
1
原创 快学数据挖掘—数据探索—分布分析和统计量分析
分布分析揭示数据的分布特征和分布类型定量数据:频率分析、频率分布表、直方图、茎叶图定性数据:饼图、条形图统计量分析用统计学指标对定量数据进行描述性分析,例如均值,中位数,众数;极差,标准差,四分位数间距等。定量数据的分布分析下面使用SPSS进行频率分析,分析菜品捞起生鱼片在2014年第二个季度的销售数据,绘制销售量的频率分布图,对销售量进行分布分析。
2016-12-18 22:26:28
1886
原创 快学数据挖掘—数据探索—异常值分析
缺失值分析缺失值产生的原因有些信息暂时无法获取,或者获取信息的代价太大。有些信息是被遗漏的。可能是因为输入时认为不重要、忘记填写或对数据理解错误等一些人为因素而遗漏,也可能是由于数据采集设备的故障、存储介质的故障、传输媒体的故障等非人为原因而丢失。属性值不存在。在某些情况下,缺失值并不意味着数据有错误。对一些对象来说某些属性值是不存在的,如一个未婚者的配偶姓名、一个儿童的固
2016-12-18 19:20:10
2096
原创 SPSS——相关分析——偏相关(Partial)分析
简介某一个要素对另一个要素的影响或相关程度时,把其他要素的影响视为常数,即暂不考虑其他要素的影响,而单独研究那两个要素之间的 相互关系的密切程度时,称为偏相关。在排除了其他变量的影响情况下再计算两变量的(简单)相关系数数学模型 偏相关系数的检验参数设置数据源 health_funding.sav散点图结果分析Health care funding和Reported diseases 的零阶相关
2016-09-19 23:07:15
35265
1
原创 SPSS——相关分析——Kendall秩相关系数
简介在统计学中,肯德尔相关系数是以Maurice Kendall命名的,并经常用希腊字母τ(tau)表示其值。肯德尔相关系数是一个用来测量两个随机变量相关性的统计值。一个肯德尔检验是一个无参数假设检验,它使用计算而得的相关系数去检验两个随机变量的统计依赖性。肯德尔相关系数的取值范围在-1到1之间,当τ为1时,表示两个随机变量拥有一致的等级相关性;当τ为-1时,表示两个随机变量拥有完全相反的等级相关性
2016-09-18 21:42:04
20684
原创 SPSS——相关分析——Spearman秩相关系数
简介斯皮尔曼等级相关(Spearman’s correlation coefficient for ranked data)主要用于解决称名数据和顺序数据相关的问题。适用于两列变量,而且具有等级变量性质具有线性关系的资料。由英国心理学家、统计学家斯皮尔曼根据积差相关的概念推导而来,一些人把斯皮尔曼等级相关看做积差相关的特殊形式。Spearman秩相关系数是一个非参数性质(与分布无关)的秩统计参数,由
2016-09-14 23:02:17
122312
9
原创 SPSS——相关分析——Pearson简单相关系数
简介相关分析属于数据分析流程前端的探索性分析,探究变量间关系及性质,其结果在于指导下一步采取何种方法,是数据挖掘之前的基础工作;场景相关分析之前,有必要搞清楚变量的类型,根据具体类型选择合适的相关系数。Pearson相关系数适用于两变量的度量水平都是尺度数据,并且两变量的总体是正态分布或者近似正态分布的情况,还有说法认为其样本量应大于30,可供参考,在这些条件之外的,考虑选择spearman系数或者
2016-09-12 22:06:09
99920
原创 SPSS——非参数检验——K Related Independe sample K个相关样本检验
简介用于在总体分布未知的情况下检验多个相关样本是否来自于相同分布的总体检验方法Friedman双向评秩方差检验 与Kruskal-Wallis H检验的思路相似,不过还考虑到区组的影响。首先对所有样本合并并按升序排列,然后求各观测量在各自行中的秩,然后对各组样本求平均秩和秩和。如果平均秩或秩和相差很大,则认为两组样本所属的总体有显著差异Kendall’W 协同系数检验 其思想是考察多
2016-09-11 13:01:45
5452
原创 SPSS——非参数检验——2 Related Independent sample两个相关样本检验
简介在总体分布未知的条件下对样本来自的两相关配对总体是否具有显著差异进行的检验,可以判断两个相关的样本是否来自相同分布的总体检验方法符号检验 符号检验是一种利用正、负号的数目对某种假设作出判定的非参数检验方法。符号检验的基本思路是,将第二组样本的每个观测值减去第一个样本的对应观测值,观测所得到的差值的符号,如果差值中正数的个数和负数的个数差距较大,则认为两样本来自的两相关配对总体具有显著差异W
2016-09-11 12:26:39
6084
1
原创 SPSS——非参数检验——K Independent sample K个独立样本检验
简介多独立样本检验用于在总体分布未知的情况下判断多个独立的样本是否来自相同分布的总体检验方法Kruskal-Wallis H检验 是Mann-Whitney U检验法的扩展,是一种推广的评价值检验。其基本思路是,首先对所有样本合并并按升序排列得出每个数据的秩,然后对各组样本求平均秩。如果平均秩相差很大,则认为两组样本所属的总体有显著差异Jonckheere-Terpstra检验法
2016-09-08 23:24:25
10171
原创 SPSS——非参数检验——2 Independent sample 两个独立样本检验
简介两独立样本检验可以判断两个独立的样本是否来自相同分布的总体。这种检验过程是通过分析两个独立样本的均值、中位数、离散趋势、偏度等描述性统计量之间的差异来实现的检验类型Mann-Whitney U检验法 检验两个样本的总体在某些位置上是否相同,其基于对平均秩的分析实现推断。 其检验思路是,首先对两个样本合并并按升序排列得出每个数据的秩,然后对这两个样本求平均秩并计算第一组样本的
2016-09-07 22:33:36
22634
1
原创 SPSS——非参数检验——1-Sample K-S 单个样本(Kolmogorov-Smirnov)柯尔莫哥洛夫-斯米诺夫检验
简介K-S检验是以两位苏联数学家Kolmogorov和Smirnov的名字命名的,它是一个拟合优度检验,研究样本观察值的分布和设定的理论分布是否吻合,通过对两个分布差异的分析确定是否有理由认为样本的观察结果来自所假定的理论分布总体原理与方法K-S检验的基本思路是:先将顺序分类资料数据的理论累积频率分布与观测的经验累积频率分布加以比较,求出它们最大的偏离值,然后在给定的显著性水平上检验这种偏离值是否是
2016-09-05 22:17:40
44491
原创 SPSS——非参数检验——Runs游程检验
简介单样本变量值的随机性检验通过游程(Run)数来实现。所谓游程是样本序列中连续出现的变量值的次数。游程检验的分析目的是用于判断观察值的顺序是否随机。这一点非常重要,因为,许多遇到的实际问题中并不只是使研究者关心分布的位置或者形状,也包括样本的随机性。如果样本不是从总体中随机抽取的,则所做的任何推断都将没有价值。游程检验是最简单的判断随机性的方法。统计量参数检验H0:序列是随机的 H1:序列是非随
2016-08-29 22:01:40
8324
原创 SPSS——非参数检验——Binomial二项分布检验
假设SPSS二项分布检验就是根据收集到的样本数据,推断总体分布是否服从某个指定的二项分布。其零假设是H0:样本来自的总体与所指定的某个二项分布不存在显著的差异。方法SPSS中的二项分布检验,在样本小于或等于30时,按照计算二项分布概率的公式进行计算;样本数大于30时,计算的是Z统计量,认为在零假设下,Z统计量服从正态分布。Z统计量的计算公式如下SPSS将自动计算Z统计量,并给出相应的相伴概率值。如果
2016-08-28 19:36:40
7260
原创 SPSS——非参数检验——Chi-square卡方检验
简介不需要对总体分布作任何事先的假设(如正态分布)从检验内容上说,也不是检验总体分布的某些参数,而是检验总体某些有关的性质,所以称为非参数检验前面进行的假设检验和方差分析,大都是在数据服从正态 分布或近似地服从正态分布的条件下进行的。但是如果总体的 分布未知,或对总体分布知之甚少的情况下,如何利用样本信息 对总体分布形态做出推断? 非参数检验 -指推断过程不涉及总体 分布中的参数场景未知分
2016-08-28 18:59:02
26480
2
原创 SPSS——方差分析(Analysis of Variance, ANOVA)——多因素方差分析(无重复试验双因素)
简介当遇到两个因素同时影响结果的情况,需要检验是一个因素起作用,还是两个因素都起作用,或者两个因素的影响都不显著场景某公司某种茶饮料的调查分析数据统计了该茶饮料两种不同的包装(新设计的包装和旧的包装)在三个随机的地点的销售金额,分析销售地点和包装方式对销售金额各有怎样的影响数学模型无重复试验双因素的方差分析数学模型试验区组假设前提构建模型假设检验偏差平方和及其分解检验F统计量 方差分析表菜单数据
2016-08-21 14:44:44
73499
2
原创 SPSS——方差分析(Analysis of Variance, ANOVA)——单因素方差分析
方差分析基本原理样本要求独立性 各样本必须是相互独立的随机样本 样本含量尽可能相等或相差不大可比性 样本均值不相同,可比较正态性 样本的总体符合正态分布,偏态分布不适用于方差分析。 对偏态分布应考虑用对数转换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态分布后再进行方差分析方差齐性 各组样本具有相同的方差基本原理由于各种因素的影响,方差分析研究的数据呈
2016-07-18 23:33:51
114839
4
原创 SPSS——均 值 检 验 (Compare Means)——配对样本T检验
简介用来检验来自两配对总体的均值是否在统计上有显著差异配对样本均数t检验简称配对t检验(paired t test),又称非独立两样本均数t检验,适用于配对设计计量资料均数的比较,其比较目的是检验两相关样本均数所代表的未知总体均数是否有差别。 配对设计(paired design)是将受试对象按某些重要特征相近的原则配成对子,每对中的两个个体随机地给予两种处理。 * 常见的配对设计*同一个对象
2016-07-12 01:01:36
22987
1
原创 SPSS——均 值 检 验 (Compare Means)——独立样本T检验
简介简介 指两个样本之间彼此独立没有关联,两个独立样本各自接受相同的测量,主要目的是分析两个独立样本的均值是否有显著差异。前提独立性两个样本相互独立,即从一总体中抽取一批样本对从另一总体中抽取一批样本没有任何影响,两组样本个案数可以不同。正态性 样本来自的两个总体服从正态分布 在样本的总体不满足正态条件时,如果两个样本的分布形状相似,他们的样本量相差不大并且样本量较大,仍可用T检验
2016-07-08 22:44:17
25428
原创 SPSS——均 值 检 验 (Compare Means)——单一样本T检验
简介检验某个变量的总体均值和指定值是否存在显著性差异,统计的前提是样本的总体服从正态分布。此检验对偏离正态性也是相当稳健的。置信区间正态总体、方差未知、小样本情况下 如果总体服从正态分布,无论样本容量大小,样本均值的抽样分布都服从正态分布。如果总体方差未知,需要用样本方差替代,在小样本的情况下,应用t分布来建立总体均值的置信区间。随着自由度的增大,t分布逐渐趋于正态分布假设检验原假设H0:
2016-07-08 21:39:12
11971
原创 SPSS——均 值 检 验 (Compare Means)——均值过程
简介和描述性统计分析相比,均值过程可以按指定条件分组计算均值和标准差等统计量,还可以执行单因素方差分析和相关分析菜单参数设置数据源:hourlywagedata.sav统计量最大值 (Maximum). 数值变量的最大值。平均值 (Mean). 集中趋势的测量。算术平均,总和除以个案个数。中位数 (Median). 第 50 个百分位,大于该值和小于该值的个案数各占一半。如果个案个数为偶数,
2016-07-08 00:40:26
41973
原创 SPSS——描述性统计分析——比率分析
简介比率分析用于对两变量间变量值比率变化的描述统计,适用于定距型变量。菜单Analyze -> Descriptive Statistics -> Ratio参数设置选择变量,在对话框的右侧,有三个输入框,分别是分子,分母,组变量;其中分子为需要计算比率统计量的分子部分,分母为需要计算比率统计量的分母部分,都应该取正值,组变量是进行分组的变量。统计量结果分析待定
2016-07-05 22:54:08
2210
原创 SPSS——描述性统计分析——列联表
什么是列联表列联表又称交互分类表,所谓交互分类,是指同时依据两个变量的值,将所研究的个案分类。交互分类的目的是将两变量分组,然后比较各组的分布状况,以寻找变量间的关系。这里是按两个变量交叉分类的,该列联表称为两维列联表,若按3个变量交叉分类,所得的列联表称为3维列联表,依次类推。3维及以上的列联表通常称为“多维列联表”或“高维列联表”,而一维列联表就是频数分布表。列联表的结构二维列联表r * c 列
2016-07-05 22:28:41
48489
2
原创 SPSS——描述性统计分析——探索性分析
菜单除了可以计算基本的统计量之外,也可以给出一些简单的检验结果和图形,有助于用户进一步的分析数据。使得用户能够从大量的分析结果之中挖掘到所需要的统计信息。适用范围 对资料的性质、分布特点等完全不清楚的时候Analyze -> Descriptive Statistics -> Expore数据源ceramics.sav因变量列表 用于选入待分析的变量因子列表 用于选择分组变量,根据
2016-07-04 00:15:35
35930
原创 SPSS——描述性统计分析——描述
简介基本的统计分析,对于数据集进行描述性统计分析 - 是连续性统计描述应用最多的一个过程 - 可将原始数据转换成标准z得分,并以变量形式存入数据表供以后分析。菜单Analyze -> Descriptive Statistics -> Expore数据源telco.sav 某电信公司的用户调查数据,利用描述性统计过程研究客户消费的变量中哪一种服务更被用户选择选项输出结果描述统计
2016-07-01 22:31:12
13470
1
原创 SPSS——描述性统计分析——频数分析
描述性统计量分类集中趋势分析——中心趋势的数值度量反映一组数据向某一位置聚集的趋势,主要的统计量有均数(mean)、中位数(median)、众数(mode)、总和(sum)以及分位数。均数适用于正态分布和对称分布的数据,中位数适用于所有类型。如果各个数据之间差异程度较小,用平均值就有很好的代表性;而如果数据之间的差异程度较大,特别是有个别的极端值的情况下,用中位数或众数有较好的代表性离散趋势分析
2016-07-01 21:52:46
37991
1
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人