# Codility-task 1-Tape Equilibrium

254人阅读 评论(0)

Codility是个great的OJ，用起来非常爽，所以我要来CSDN上安利一下！

A non-empty zero-indexed array A consisting of N integers is given. Array A represents numbers on a tape.

Any integer P, such that 0 < P < N, splits this tape into two non-empty parts: A[0], A[1], ..., A[P − 1] and A[P], A[P + 1], ..., A[N − 1].

The difference between the two parts is the value of: |(A[0] + A[1] + ... + A[P − 1]) − (A[P] + A[P + 1] + ... + A[N − 1])|

In other words, it is the absolute difference between the sum of the first part and the sum of the second part.

For example, consider array A such that:

  A[0] = 3
A[1] = 1
A[2] = 2
A[3] = 4
A[4] = 3

We can split this tape in four places:

• P = 1, difference = |3 − 10| = 7
• P = 2, difference = |4 − 9| = 5
• P = 3, difference = |6 − 7| = 1
• P = 4, difference = |10 − 3| = 7

Write a function:

int solution(vector<int> &A);

that, given a non-empty zero-indexed array A of N integers, returns the minimal difference that can be achieved.

For example, given:

  A[0] = 3
A[1] = 1
A[2] = 2
A[3] = 4
A[4] = 3

the function should return 1, as explained above.

Assume that:

• N is an integer within the range [2..100,000];
• each element of array A is an integer within the range [−1,000..1,000].

Complexity:

• expected worst-case time complexity is O(N);
• expected worst-case space complexity is O(N), beyond input storage (not counting the storage required for input arguments).

Elements of input arrays can be modified.

//Codility
//Zhang Wenjian 07-06-2015
int solution(vector<int> &A) {
// write your code in C++11
long long sum;
long long th;

for(vector<int>::size_type it=0;it<A.size();it++)
sum+=A[it];
th=abs(sum-2*A[0]);
if(A.size()==2)
return abs(A[0]-A[1]);
for(vector<int>::size_type it=0;it<A.size()-1;it++)
{
sum-=2*A[it];
if(abs(sum)<th)
th=abs(sum);
}

return th;
}

0
0

* 以上用户言论只代表其个人观点，不代表CSDN网站的观点或立场
个人资料
• 访问：2629次
• 积分：104
• 等级：
• 排名：千里之外
• 原创：7篇
• 转载：1篇
• 译文：1篇
• 评论：0条
文章分类
评论排行