郁闷的出纳员
64-bit integer IO format: %lld Java class name: Main
OIER公司是一家大型专业化软件公司,有着数以万计的员工。作为一名出纳员,我的任务之一便是统计每位员工的工资。这本来是一份不错的工作,但是令人郁闷的是,我们的老板反复无常,经常调整员工的工资。如果他心情好,就可能把每位员工的工资加上一个相同的量。反之,如果心情不好,就可能把他们的工资扣除一个相同的量。我真不知道除了调工资他还做什么其它事情。 工资的频繁调整很让员工反感,尤其是集体扣除工资的时候,一旦某位员工发现自己的工资已经低于了合同规定的工资下界,他就会立刻气愤地离开公司,并且再也不会回来了。每位员工的工资下界都是统一规定的。每当一个人离开公司,我就要从电脑中把他的工资档案删去,同样,每当公司招聘了一位新员工,我就得为他新建一个工资档案。 老板经常到我这边来询问工资情况,他并不问具体某位员工的工资情况,而是问现在工资第k多的员工拿多少工资。每当这时,我就不得不对数万个员工进行一次漫长的排序,然后告诉他答案。 好了,现在你已经对我的工作了解不少了。正如你猜的那样,我想请你编一个工资统计程序。怎么样,不是很困难吧?
Input
第一行有两个非负整数n和min。n表示下面有多少条命令,min表示工资下界。
接下来的n行,每行表示一条命令。命令可以是以下四种之一:
| 名称 | 格式 | 作用 |
| I命令 | I_k | 新建一个工资档案,初始工资为k。如果某员工的初始工资低于工资下界,他将立刻离开公司。 |
| A命令 | A_k | 把每位员工的工资加上k |
| S命令 | S_k | 把每位员工的工资扣除k |
| F命令 | F_k | 查询第k多的工资 |
_(下划线)表示一个空格,I命令、A命令、S命令中的k是一个非负整数,F命令中的k是一个正整数。
在初始时,可以认为公司里一个员工也没有。
Output
输出文件的行数为F命令的条数加一。 对于每条F命令,你的程序要输出一行,仅包含一个整数,为当前工资第k多的员工所拿的工资数,如果k大于目前员工的数目,则输出-1。 输出文件的最后一行包含一个整数,为离开公司的员工的总数。
Sample Input
9 10
I 60
I 70
S 50
F 2
I 30
S 15
A 5
F 1
F 2
Sample Output
10
20
-1
2
Hint
I命令的条数不超过100000
A命令和S命令的总条数不超过100
F命令的条数不超过100000
每次工资调整的调整量不超过1000
新员工的工资不超过100000
Source
——————————————————————————————————————————————————
文档的分析:
与一般的修改不同,这道题要求对所有人修改,如果一个一个进行的话,修改工资的时间复杂度高达O(N)。如果我们反过来考虑,定义一个“基准值”,把所有人的工资看作“相对工资”,就是相对于基准值。这样每次修改所有人工资仅仅需要修改基准值就行了。于是变成了一个动态统计问题,建立一个Treap,存储相对工资。
为了方便考虑,定义基准值为delta,相对工资V对应的实际工资为F[V],则有F[V]=V+delta,V=F[V]-delta。定义工资下限为lowbound这是一个实际的下限,存储相对下限就是lowbound-delta。
对于I_k插入一个新的工资记录值k,k为实际工资,对应的相对工资为k-delta,应把k-delta插入Treap。
对于A_k,将基准值delta增加k。对于S_k,将基准值delta减少k,然后在Treap中删除所有小于(lowbound-delta)的元素。
由于我们总是查询第k多的工资,我们可以依照例1的方法,求(总数-k+1)小的工资。我们也不妨换种思路,把Treap建立成一个关键字反序大小比较的Treap,即在比较函数中规定如果a>b(实际的),则a小于b(逻辑的),a放在b的左子树。这虽然难以理解,但却能够满足一定的逻辑顺序。这样建立出的Treap就是自然的从大到小排序的了,查询第k多的工资,就是求排名第k的元素。
Treap指针的写法RE,然后WA。突然想起来大白上面说的:
在实际编码中,为了减少出错的可能性,一般用一个真实的指针null代替空指针NULL
Node *null=new Node()
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<ctime>
#define REP(i,n) for(int i=0;i<(n);++i)
#define FOR(i,a,b) for(int i=(a);i<(b);++i)
#define FORD(i,a,b) for(int i=(a);i<=(b);++i)
using namespace std;
int delta,n,m,leave;
struct Treap {
struct Node {
int v,r,s;//相对工资,优先级,结点数
Node* ch[2];
int cmp(int x)const
{
if(x==v) return -1;
return x<v?0:1;
}
void push_up()
{
s=ch[0]->s+ch[1]->s+1;
}
};
Node* root,*null;
Treap()
{
null=new Node();
root=null;
}
void rotate(Node* &o,int d) //旋转
{
Node* k=o->ch[d^1];
o->ch[d^1]=k->ch[d];
k->ch[d]=o;
o->push_up();
k->push_up();
o=k;
}
void insert(Node* &o,int x) //插入
{
if(o==null) {
o=new Node();
o->ch[0]=o->ch[1]=null;
o->v=x;
o->s=1;
o->r=rand();
} else {
int d=(o->v>x?0:1);
insert(o->ch[d],x);
if(o->ch[d]->r > o->r) rotate(o,d^1);
}
o->push_up();
}
int del(Node* &o,int x)
{
if(o==null) return 0;
if(o->v<x) {
int t=o->ch[0]->s+1;
o=o->ch[1];
return t+del(o,x);
} else {
int t=del(o->ch[0],x);
o->s-=t;
return t;
}
}
int find(Node* o,int k) //查找第k大
{
if(o==null||k<0||k>o->s) return 0;
int s=(o->ch[1]==null?0:o->ch[1]->s);
if(k==s+1) return o->v;
if(k<=s) return find(o->ch[1],k);
else return find(o->ch[0],k-s-1);
}
} tp;
int main()
{
//#ifndef ONLINE_JUDGE
//freopen("in.cpp","r",stdin);
//#endif // ONLINE_JUDGE
tp=Treap();
delta=leave=0;
scanf("%d%d",&n,&m);
char op[10];
int x;
while(n--) {
scanf("%s%d",op,&x);
if(op[0]=='I') if(x>=m) tp.insert(tp.root,x-delta);
if(op[0]=='A') delta+=x;
if(op[0]=='S') {
delta-=x;
leave+=tp.del(tp.root,m-delta);
}
if(op[0]=='F') {
if(x> tp.root->s) printf("-1\n");
else printf("%d\n",tp.find(tp.root,x)+delta);
}
}
printf("%d\n",leave);
return 0;
}
伸展树:插入时将插入的点伸展到根,使得在伸展的过程中使树趋于平衡,不容易被卡,而不是用push_up,虽然两者都能更新父节点的域。
#include<iostream>
#include<cstdio>
using namespace std;
const int maxn=100010;
int n,m;
int delta,leave;
struct Splay{
int ch[maxn][2],key[maxn],s[maxn],pre[maxn];
int root,tot;
Splay(){root=tot=ch[0][0]=ch[1][0]=s[0]=pre[0]=key[0]=0;}
void push_up(int rt){
int lson=ch[rt][0],rson=ch[rt][1];
s[rt]=s[lson]+s[rson]+1;
}
void rotate(int x,int d){
int y=pre[x];
ch[y][d^1]=ch[x][d];
pre[ch[x][d]]=y;
if(pre[y])
ch[pre[y]][ch[pre[y]][1]==y]=x;
pre[x]=pre[y];
ch[x][d]=y;
pre[y]=x;
push_up(y);
}
void splay(int x,int goal){
while(pre[x]!=goal){
if(pre[pre[x]]==goal)
rotate(x,ch[pre[x]][0]==x);
else{
int y=pre[x];
int d=ch[pre[y]][0]==y;
if(ch[y][d]==x){
rotate(x,!d);
rotate(x,d);
}else{
rotate(y,d);
rotate(x,d);
}
}
}
push_up(x);
if(goal==0) root=x;
}
void insert(int &rt,int x,int f){
if(!rt){
rt=++tot;
ch[rt][0]=ch[rt][1]=0;
s[rt]=1;
key[rt]=x;
pre[rt]=f;
splay(rt,0);//伸展
return;
}
if(key[rt]>x){
insert(ch[rt][0],x,rt);
}else{
insert(ch[rt][1],x,rt);
}
// push_up(rt);会超时
}
int del(int &rt,int x,int f){
if(!rt) return 0;
int t;
if(key[rt]<x){
t=s[ch[rt][0]]+1+del(ch[rt][1],x,rt);
s[ch[rt][1]]=s[rt]-t;
rt=ch[rt][1];
pre[rt]=f;
}else{
t=del(ch[rt][0],x,rt);
s[rt]-=t;
}
return t;
}
int find(int rt,int k){
int t=s[ch[rt][1]];
if(t+1==k) return key[rt];
if(k<=t) return find(ch[rt][1],k);
else return find(ch[rt][0],k-t-1);
}
void pri(int rt){
if(!rt) return;
pri(ch[rt][0]);
printf("%d ",key[rt]);
pri(ch[rt][1]);
}
};
int main()
{
//#ifndef ONLINE_JUDGE
//freopen("in.cpp","r",stdin);
//#endif // ONLINE_JUDGE
Splay spt=Splay();
scanf("%d%d",&n,&m);
char op[10];int x;
while(n--){
scanf("%s%d",op,&x);
if(op[0]=='I') if(x>=m) {spt.insert(spt.root,x-delta,0);
// spt.pri(spt.root);cout<<endl<<"size[root]="<<spt.s[spt.root]<<endl;
}
if(op[0]=='A') delta+=x;
if(op[0]=='S'){
delta-=x;
leave+=spt.del(spt.root,m-delta,0);
// spt.pri(spt.root);
// cout<<endl<<"size[root]="<<spt.s[spt.root]<<endl;
}
if(op[0]=='F'){
if(spt.s[spt.root]<x) printf("-1\n");
else printf("%d\n",spt.find(spt.root,x)+delta);
}
}
printf("%d\n",leave);
return 0;
}
树状数组写法是类似的,用二分查找第k大,另外用一个优先队列来存放插入的点
#include<iostream>
#include<cstdio>
#include<queue>
#include<vector>
#include<functional>
#include<cstring>
const int inc=10000,maxn=200000;//我觉得按照题目的尿性,inc开100000好点吧?但是就WA了?数组越界?不可能,想不通
using namespace std;
int n,m;
int delta,leave;
int c[maxn+10];
void update(int x,int v){
for(int i=x;i<=maxn;i+=i&-i){
c[i]+=v;
}
}
int get_sum(int x){
int sum=0;
for(int i=x;i>0;i-=i&-i){
sum+=c[i];
}
return sum;
}
int findk(int k){
int l=1,r=maxn;
while(l<r){
int m=(l+r)>>1;
int t=get_sum(m);
if(k<=t) r=m;
else l=m+1;
}
return l+delta-inc;
}
int main()
{
//#ifndef ONLINE_JUDGE
//freopen("in.cpp","r",stdin);
//#endif // ONLINE_JUDGE
memset(c,0,sizeof(c));
priority_queue<int,vector<int>,greater<int> > q;
scanf("%d%d",&n,&m);
char op[10];int x;
while(n--){
scanf("%s%d",op,&x);
if(op[0]=='I') if(x>=m){update(x-delta+inc,1);q.push(x-delta); }
if(op[0]=='A') delta+=x;
if(op[0]=='S'){
delta-=x;
while(!q.empty()){
int u=q.top();
if(u>=m-delta) break;
q.pop();
update(u+inc,-1);
leave++;
}
}
if(op[0]=='F'){
printf("%d\n",x<=q.size()?findk(q.size()-x+1):-1);
}
}
printf("%d\n",leave);
return 0;
}
本文介绍了一个关于工资统计的问题,需要处理员工工资的增减、查询及离职等操作。通过使用Treap数据结构来实现高效的工资调整和查询,解决了传统方法效率低下的问题。
152

被折叠的 条评论
为什么被折叠?



