匈牙利算法:
求最大匹配,那么我们希望每一个在左边的点都尽量找到右边的一个点和它匹配。我们依次枚举左边的点x的所有出边指向的点y,若y之前没有被匹配,那么(x,y)就是一对合法的匹配,我们将匹配数加一,否则我们试图给原来匹配y的x’重新找一个匹配,如果x’匹配成功,那么(x,y)就可以新增为一对合法的匹配。给x’寻找匹配的过程可以递归解决.
从一边的未饱和点出发,寻找增广路
复杂度:O(VE)
const int MAXN=555;//最大顶点数
vector<int> g[MAXN];//g[i]表示与左边点i相连的右边的点
int nx,ny;//每一侧的顶点数
int tot;//最大匹配数
int from[MAXN];//from[y]表示与Yi匹配的X顶点 // cy数组
bool use[MAXN];//标记数组
bool match(int x){
for(int i=0;i<g[x].size();++i){
if(!use[g[x][i]]){
use[g[x][i]]=true;
if(from[g[x][i]]==-1||match(from[g[x][i]])){
from[g[x][i]]=x;
return true;
}
}
}
return false;
}
int hungary(){
tot=0;
memset(from,255,sizeof(from));
for(int i=1;i<=nx;++i){//一侧的点数
memset(use,0,sizeof(use));
if(match(i))
++tot;
}
return tot;
}
KM算法:
转http://blog.csdn.net/niushuai666/article/details/7171880
给定一个带权的二分图,求权值最大的完备匹配
相等子图的完备匹配=原图的最大权匹配
1. 初始化可行性顶标
2.对n个点在相等子图中寻找增广路
- 2.1 初始化访问标记
- 2.2 寻找增广路
- 2.3若增广路不存在,则修改交错路中的顶标,直到对某个点而言找到一条增广路为止
3.求得最大权
算法时间复杂度 O(n3)
#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
const int MAXN=310;//最大顶点数
const int INF=0x3f3f3f3f;
using namespace std;
int n;//一侧的顶点个数
int lx[MAXN],ly[MAXN],linker[MAXN];//记录两侧的顶标,与Yi匹配的X点
int slack[MAXN];//松弛标记
bool visx[MAXN],visy[MAXN];//访问标记
int g[MAXN][MAXN];//记录边权
bool match(int x){//匈牙利算法寻找增广路
visx[x]=true;
for(int y=0;y<ny;++y){
if(visy[y]) continue;
int tmp=lx[x]+ly[y]-g[x][y];
if(tmp==0){//相等子图
visy[y]=true;
if(linker[y]==-1||match(linker[y])){
linker[y]=x;
return true;
}
}
else if(slack[y]>tmp) slack[y]=tmp;//动态维护slack
}
return false;
}
int km(){
memset(linker,0xff,sizeof(linker));
memset(ly,0,sizeof(ly));
for(int i=0;i<nx;++i){//初始化可行顶标
lx[i]=INF;
for(int j=0;j<ny;++j)
if(g[i][j]>lx[i]) lx[i]=g[i][j];
}
for(int x=0;x<nx;++x){
for(int i=0;i<ny;++i)
slack[i]=INF;
while(1){//直到找到增广路
memset(visx,0,sizeof(visx));//清除访问标记
memset(visy,0,sizeof(visy));
if(match(x)) break;
int d=INF;
for(int i=0;i<ny;++i)//修改顶标
if(!visy[i]&&d>slack[i])
d=slack[i];
for(int i=0;i<nx;++i)
if(visx[i])
lx[i]-=d;
for(int i=0;i<ny;++i)
if(visy[i]) ly[i]+=d;
else slack[i]-=d;
}
}
int sum=0;
for(int i=0;i<ny;++i){
if(linker[i]!=-1)
sum+=g[linker[i]][i];
}
return sum;
}