【第21期】观点:人工智能到底用 GPU?还是用 FPGA?

推荐系统开发之要考虑的问题

原创 2015年07月06日 19:43:59
1.用户行为数据:
     反馈方式:显式&&隐式
     表示:用户兴趣向量
     数据预处理:大量样本存在噪声,可以去掉。
     
2.推荐方/算法
     basic的三种:content-based、collaborative filtering(user-based & item_based)
     算法优良应取决于实际的数据,不同的算法对不同的推荐系统反响不尽相同。


3.special的考虑因素
   eg:时间戳(如、可以在计算相似度时引入时间因子)
           地域特征


4.冷启动问题:又可分为user冷启动 & item冷启动
user冷启动   
solutions:1)热门推荐(排行榜)
                     2)充分利用其他信息,如用户的来源ip、访问时间、、、
                     3)初始用户回答问题(问题选择要有代表性、选项间要有区分度)
 
item冷启动:这时content-based方法能发挥关键作用,although此方法推荐进度不够高,但其在处理item冷启动时有先天优势。


5.推荐结果展示方式:
   1)突出显示用户的关注重点:不同item的推荐,要考虑用户关注点不同;(一般包括标题、缩略图、介绍等)
   2)推荐展示的场景和位置要符合用户的行为习惯(求职社交网站LinkedIn的对比实验表明,在用户        申请完一个工作的之前或之后分别展示推荐结果,前者的点击率是 后者的10倍。在网页正中或      右侧边栏放置推荐结果,点击率也相差5倍之多。)

   3)要提供推荐理由!!!!!(能够赢得用户的信任,进而让用户更容易接受推荐给他的结果)

   4)设置一些按钮让用户对推荐结果进行反馈(参考amazon),不断改善用户体验。



6.明确优化目标---then衡量指标
    eg:点击率、准确率、覆盖率、多样性、新颖性、、、
    可加权折衷后进行结果测评
版权声明:本文为博主原创文章,未经博主允许不得转载。 举报

相关文章推荐

推荐系统

(一)概念 1.协同过滤(Collaborative Filtering,CF)是现今推荐系统中应用最为成熟的一个推荐算法,它利用兴趣相投、拥有共同经验之群体的喜好来推荐使用者感兴趣的资讯,个人透过合...

《推荐系统》--最新进展:攻击、在线消费决策、普适环境、总结及经验

推荐系统植根于不同的研究领域,比如信息检索、信息过滤和文本分类,采用了不同领域的方法,比如机器学习、数据挖掘和基于知识的系统。 《推荐系统》这本书,是一本导读,向读者提供有关这个领域的概述和简介。 在...

推荐系统评测指标

推荐系统评测指标介绍

推荐系统之协同过滤

推荐方法称为协同过滤。顾名思义,这个方法是利用他人的喜好来进行推 荐,也就是说,是大家一起产生的推荐。他的工作原理是这样的:如果要推荐一本书给你, 我会在网站上查找一个和你类似的用户,然后将他喜欢的书...

推荐系统:概述

1.前言 推荐系统存在的目的是根据以往的数据给出推荐。这里简要总结下推荐系统使用方法,万一以后要用到推荐算法,可以将这几类算法作为入口进行研究。 2.基于近邻的协同过滤推荐算法 1)寻找...

个性化推荐系统方向简单介绍

先介绍下的咱们目前推荐系统的做的两个大方向:          1、基于自然语言处理的用户短期和长期兴趣+rank 排序。            推荐方法:a)、基于topic&keywrods等信息...

推荐系统笔记

冷启动问题

推荐系统实践

1、了解推荐系统相关知识 http://baike.baidu.com/link?url=k-FW73rnBC-xBHik2gL7pS1_-1JjJfFG1MocfB8gnfza5hFo5H9HKHV...

实时推荐系统的三种方式

 推荐系统介绍 自从1992年施乐的科学家为了解决信息负载的问题,第一次提出协同过滤算法,个性化推荐已经经过了二十几年的发展。1998年,林登和他的同事申请了“item-to-item”协同...

推荐系统方法(利用用户行为数据)

基于用户行为数据的推荐系统方法简单介绍:主要涉及基于邻近的方法、隐语义模型
收藏助手
不良信息举报
您举报文章:深度学习:神经网络中的前向传播和反向传播算法推导
举报原因:
原因补充:

(最多只允许输入30个字)