tf1: nn实现评论分类

这篇博客介绍了如何使用TensorFlow实现一个简单的文本分类任务,特别是针对电影评论的正面和负面判断。作者通过下载英文电影评论数据集,将文本转化为数字表示,然后利用神经网络进行训练。虽然初步模型的准确率只有60%,但指出数据量的增加和更复杂的模型可能带来准确率的提升。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

TensorFlow是谷歌2015年开源的一个深度学习库,到现在正好一年。和TensorFlow类似的库还有Caffe、Theano、MXNet、Torch。但是论火爆程度,TensorFlow当之无愧,短短一年就在Github就收获了4万+颗星,把前面几个库获得的star加起来也不敌TensorFlow。

 

TensorFlow使用C++开发,并提供了Python等语言的封装。如命名一样,TensorFlow为张量从图一端流动到另一端的计算过程,可以把张量看作矩阵。TensorFlow并不是一个抽象程度特别高的库,但是它实现了所有深度学习所需的函数。貌似有几个高度抽象的库使用TensorFlow做为后端。

TensorFlow可被用于语音识别或图像识别等多项机器深度学习领域,它可在小到手机、大到数千台服务器上运行。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值