MachineLP的专栏

成功收获成果,失败收获智慧,投入收获快乐!

MachineLP博客目录

MachineLP: 其实事物发展有自己的潮流和规律,当你身处潮流之中的时候,要紧紧抓住潮流的机会,想办法脱颖而出,即使没有成功,也会更加洞悉时代的脉搏,收获珍贵的知识和经验。而如果潮流已经退去,这个时候再去往这个方向上努力,只会收获迷茫与压抑,对时代、对自己都没有什么帮助。 ...

2017-11-02 10:48:28

阅读数 18633

评论数 8

数据分析实战清单

2019-05-15 09:50:46

阅读数 59

评论数 0

spark杂记:movie recommendation using ALS

Spark 学习笔记可以follow这里:https://github.com/MachineLP/Spark- 数据下载:https://grouplens.org/datasets/movielens/latest/ ALS(Alternating Least Squares)算法是基于矩...

2019-04-02 22:12:07

阅读数 46

评论数 0

spark杂记:Operations on (key,val) RDDs

Spark 学习笔记可以follow这里:https://github.com/MachineLP/Spark- Types of spark operations There are Three types of operations on RDDs: Transformations, Ac...

2019-03-24 18:26:52

阅读数 104

评论数 0

spark杂记:Word Count

Spark 学习笔记可以follow这里:https://github.com/MachineLP/Spark- Word Count Counting the number of occurances of words in a text is a popular first exercis...

2019-03-21 23:05:29

阅读数 73

评论数 0

spark杂记:Spark Basics 2:Chaining,counting,transformations

Spark 学习笔记可以follow这里:https://github.com/MachineLP/Spark- Chaining We canchaintransformations and aaction to create a computationpipeline Suppose w...

2019-03-21 22:39:37

阅读数 57

评论数 0

spark杂记:Execution plans, Lazy Evaluation, and caching

Spark 学习笔记可以follow这里:https://github.com/MachineLP/Spark- Task:calculate the sum of squares : The standard (orbusy) way to do this is Calculate t...

2019-03-19 22:13:50

阅读数 101

评论数 0

spark杂记:Spark Basics

Spark 学习笔记可以follow这里:https://github.com/MachineLP/Spark- 下面来看几个问题,下面将关注几个问题进行阐述: Mac下安装pyspark spark相关基础知识 1、Mac下安装pyspark 可以参考:Big Data Analytic...

2019-02-20 22:03:07

阅读数 115

评论数 0

DL杂记:word2vec之TF-IDF、共轭矩阵、cbow、skip-gram

下面来看几个问题,下面将关注几个问题进行阐述: 为什么是word2vector 为什么语义的word2vec要好于无语义word2vec cbow的word2vec结果展示 TF实现TF-IDF、共轭矩阵、cbow、skip-gram 训练好的word embedding通过倒排进行检索...

2019-02-20 21:03:25

阅读数 133

评论数 2

DL杂记:再议长短时记忆网络(Long Short Term Memory Network, LSTM)

对rnn的一些模型结构可以查看这篇文章:RNN:几张图搞懂RNN模型构建 下面来 着重看一些lstm: LSTM:是一种改进之后的循环网络,可以解决rnn无法处理长距离依赖的问题。 首先看一下原始rnn: 其实rnn可以看成是一个很深的network。 如下图所示的形式。 但是原始rn...

2019-01-20 16:19:22

阅读数 633

评论数 0

Python数据可视化的10种技能

如果你想要用 Python 进行数据分析,就需要在项目初期开始进行探索性的数据分析,这样方便你对数据有一定的了解。其中最直观的就是采用数据可视化技术,这样,数据不仅一目了然,而且更容易被解读。同样在数据分析得到结果之后,我们还需要用到可视化技术,把最终的结果呈现出来。 可视化视图都有哪些? 按...

2019-01-17 09:23:18

阅读数 316

评论数 0

DL杂记:YOLOV3之禅

MachineLP的Github(欢迎follow):https://github.com/MachineLP 对于框架的就不多解释了,下面着重抠几个细节,分别是: (1)kmeans如何获取anchors (2)获取anchors,给anchor打标。 (3)Anchor的预测 (1)...

2019-01-16 18:52:08

阅读数 352

评论数 0

所见即所得

看到的只有认真总结积累沉淀,才能做到所见即所得!!!   一直提倡开源,闭源阻碍不了社会的进步,只会使自己退步,因为跟不上时代,不进则退。 周末笔记,不严谨,只是对技术的执着! 没有比较很难去发现自己的问题,短时间内提供算法到最优,‘需要对业务和算法深刻的洞察,问题肯定是有解决方法的,遇到问...

2019-01-13 10:37:26

阅读数 364

评论数 0

tf47:SeqGAN

MachineLP的Github(欢迎follow):https://github.com/MachineLP GAN 为什么没有 在NLP 取得好成绩? 虽然 GAN 在图像生成上取得了很好的成绩,GAN 并没有在自然语言处理(NLP)任务中取得让人惊喜的成果。 其原因大概可以总结为如下几点...

2019-01-10 18:26:52

阅读数 358

评论数 1

pycuda 之 安装与简单使用

  pycuda安装:     (1)查看CUDA版本:cat /usr/local/cuda/version.txt   (目前实验CUDA版本为:CUDA Version 9.0.176)     (2)查看cudnn版本:cat /usr/local/cuda/include/cudn...

2018-12-29 14:53:17

阅读数 1777

评论数 0

人脸检测——FaceBoxes之解读与效果展示

本章对其论文进行简单解读及其效果的演示: 文章链接:《FaceBoxes: A CPU Real-time Face Detector with High Accuracy》 总体的流程图如下所示: 本质上并不复杂,熟悉fasterRcnn,或者熟悉rpn就可以很快搞清楚。 faceB...

2018-12-06 22:21:55

阅读数 1768

评论数 0

MySQL实战 -- 可重复读 与 虚读

  事物隔离级别是可重复度:   section 1: (1)创建数据库: create DATABASE TESTDB; (2)创建表:         CREATE TABLE `t` (   `id` int(11) NOT NULL,   `c` int(11) DEFAULT...

2018-12-01 22:20:38

阅读数 177

评论数 0

data_structure_and_algorithm -- 如何找到字符串中最长回文子串: python & java实现

  Given a string s, find the longest palindromic substring in s. You may assume that the maximum length of s is 1000. Example 1: Input: "...

2018-11-29 09:14:42

阅读数 95

评论数 0

LeetCode Algorithm

刷lc不为其他,只为工程能力扩展与思维提升! 请看github:leetCode   Given an array of integers, return indices of the two numbers such that they add up to a specific targe...

2018-11-23 22:56:08

阅读数 110

评论数 0

bert原理及代码解读

BERT: (Bidirectional Encoder Representations from Transformers) BERT的新语言表示模型,它代表Transformer的双向编码器表示。与最近的其他语言表示模型不同,BERT旨在通过联合调节所有层中的上下文来预先训练深度双向表示。...

2018-11-23 12:20:26

阅读数 5301

评论数 2

提示
确定要删除当前文章?
取消 删除
关闭
关闭