MachineLP的专栏

成功收获成果,失败收获智慧,投入收获快乐!

排序:
默认
按更新时间
按访问量

博客目录

本文为博主原创文章,未经博主允许不得转载。 欢迎加微信:lp9628(注明CSDN)。  因为相信所以遇见,有时候你我相遇不一定是巧合。 MachineLP的学习星球欢迎关注: 公众号MachineLN,邀请您扫码关注:   MachineLP的Github(欢迎follow):...

2017-11-02 10:48:28

阅读数:10775

评论数:7

tf45:tensorflow计算图是如何做的?

  还是一如既往的直接看代码吧,

2018-09-16 21:32:31

阅读数:163

评论数:0

tf44:tensorflow CRF的使用

CRF的应用还是挺多的,像前期deeplab的语义分割、bilstm+crf做词性标注。 CRF简单的例子: # coding=utf-8 import numpy as np import tensorflow as tf # 参数设置 num_examples = 10 num_wo...

2018-07-31 11:04:33

阅读数:320

评论数:0

tf43:tensorflow Serving gRPC 部署实例

(1)克隆到本地: git clone https://github.com/tensorflow/serving.git(2)cd到serving目录下面(3)pip install tensorflow-serving-api(4)运行: python tensorflow_serving/e...

2018-07-12 08:48:15

阅读数:455

评论数:2

tf42:tensorflow多GPU训练

直接看TF代码吧,代码比较简单:from __future__ import division, print_function, absolute_import import numpy as np import tensorflow as tf import time # Import MN...

2018-07-09 18:18:05

阅读数:319

评论数:0

tf41:使用TF models训练自己的目标检测器

(1)目标检测样本集的标定:https://github.com/MachineLP/labelImg(2)生成训练集和测试集的txt文件:https://github.com/MachineLP/tf-faster-rcnn/blob/master/tools/g_img_path.py(3)按...

2018-07-01 16:55:35

阅读数:396

评论数:0

tf40:图像检索(triplet_loss)之Conditional Similarity Networks

论文地址:Conditional Similarity Networks原理比较简单,目的就是按照不同的condition,在embedding上得到一个可变的mask。下面是原理图,具体细节可以看论文,我的TF实现:https://github.com/MachineLP/conditional...

2018-06-26 11:24:34

阅读数:402

评论数:0

Flask01:SQLAlchemy

界面显示:app.pyfrom flask import Flask, request, flash, url_for, redirect, render_template from flask_sqlalchemy import SQLAlchemy app = Flask(__name__)...

2018-06-17 20:26:05

阅读数:170

评论数:0

基于SIFT特征的图像检索 vs CNN

在深度学习这么火热的今天,为什么还会尝试SIFT特征进行图像检索?其实问题是这样的,学习的过程有时候是依据前人的经验,这样可以使我们少走弯路,但是我们我持有怀疑的态度,很多事情只有自己去尝试了,才能说服自己不是吗?下面简单的对比一下sift和cnn的检索结果:(基于此改进的版本好多)检索库:sif...

2018-06-12 08:43:10

阅读数:916

评论数:1

tf39:tensorflow之seq2seq

MachineLP的Github(欢迎follow):https://github.com/MachineLPseq2seq还是很赞的,既能做翻译、又能做image captioning,还能做多标签。原理介绍已经有很多了,那我们在看一下TF的seq2seq代码吧:# coding=utf-8 i...

2018-06-08 16:29:10

阅读数:302

评论数:0

torch09:variational_autoencoder(VAE)--MNIST和自己数据集

  MachineLP的Github(欢迎follow):https://github.com/MachineLP MachineLP的博客目录:小鹏的博客目录 本小节使用torch搭建VAE模型,训练和测试: (1)定义模型超参数:输入大小、隐含单元、迭代次数、批量大小、学习率。 (2...

2018-06-07 22:06:17

阅读数:238

评论数:0

torch08:RNN--word_language_model

MachineLP的Github(欢迎follow):https://github.com/MachineLP本小节使用torch搭建RNN模型,训练和测试:(1)定义模型超参数:rnn的输入,rnn隐含单元,rnn层数,迭代次数、批量大小、学习率。(2)定义训练数据,加餐部分是使用自己的数据集:...

2018-06-03 19:53:43

阅读数:246

评论数:0

torch07:RNN--MNIST识别和自己数据集

MachineLP的Github(欢迎follow):https://github.com/MachineLP本小节使用torch搭建CNN模型,训练和测试:(1)定义模型超参数:rnn的输入,rnn隐含单元,rnn层数,迭代次数、批量大小、学习率。(2)定义训练数据,加餐部分是使用自己的数据集:...

2018-06-02 12:57:44

阅读数:278

评论数:0

torch06:ResNet--Cifar识别和自己数据集

MachineLP的Github(欢迎follow):https://github.com/MachineLP本小节使用torch搭建CNN模型,训练和测试:(1)定义模型超参数:迭代次数、批量大小、学习率。(2)定义训练数据,加餐部分是使用自己的数据集:(可参考:https://blog.csd...

2018-06-02 11:46:08

阅读数:384

评论数:0

torch05:CNN--MNIST识别和自己数据集

MachineLP的Github(欢迎follow):https://github.com/MachineLP本小节使用torch搭建CNN模型,训练和测试:(1)定义模型超参数:输出、迭代次数、批量大小、学习率。(2)定义训练数据,加餐部分是使用自己的数据集:(可参考:https://blog....

2018-06-02 11:22:35

阅读数:322

评论数:0

torch04:全连接神经网络--MNIST识别和自己数据集

MachineLP的Github(欢迎follow):https://github.com/MachineLP本小节使用torch搭建线性回归模型,训练和测试:(1)定义模型超参数:输入大小、隐含层、输出、迭代次数、批量大小、学习率。(2)定义训练数据,加餐部分是使用自己的数据集:(可参考:htt...

2018-06-01 21:52:48

阅读数:338

评论数:0

torch03:linear_regression

MachineLP的Github(欢迎follow):https://github.com/MachineLP本小节使用torch搭建线性回归模型,训练和测试:(1)定义模型超参数:输入大小、输出、迭代次数、学习率。(2)定义训练数据:或者使用自己的数据集:(可参考:https://blog.cs...

2018-06-01 21:16:55

阅读数:170

评论数:0

torch02:logistic regression--MNIST识别

MachineLP的Github(欢迎follow):https://github.com/MachineLP本小节使用torch搭建逻辑回归模型,训练和测试:(1)定义模型超参数:输入大小、类别数量、迭代次数、批量大小、学习率。(2)获取训练数据:使用已有的,或者使用自己的数据集:(可参考:ht...

2018-05-31 21:08:43

阅读数:212

评论数:0

torch01:torch基础

本小节介绍torch的基础好操作和流程:(1)计算表达式的梯度值。(2)数组与tensor。(3)构建输入管道。(4)加载预训练的模型。(5)保存和加载权重。---------------------------------我是可爱的分割线-----------------------------...

2018-05-30 23:03:56

阅读数:412

评论数:0

tf38:tensorflow使用pipeline通过队列方式读取数据训练

TF在训练的时候有好多方式,可以用转为TF的tfRecords;也可以通过数组读进内存的方式(数据量小或者内存总够大);或者数据量大时在每个batch的时候处理数据,这样会加大交互的时间,减少cpu的利用率;那么今天介绍一种借助TF的API使用pipeline通过队列方式读取数据的方式:先认识两个...

2018-05-25 15:05:15

阅读数:359

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭