tf5: Deep Q Network—AI游戏

292 篇文章 18 订阅
175 篇文章 13 订阅

Deep Q Network是DeepMind最早(2013年)提出来的,是深度强化学习方法。

最开始AI什么也不会,通过给它提供游戏界面像素和分数,慢慢把它训练成游戏高手。

Github上有不少DQN实现,在本帖中,我使用TensorFlow训练一个简单的游戏AI。

  1. 使用pygame写一个简单的小游戏
  2. 使用强化学习训练游戏AI

pygame小游戏

import pygame
from pygame.locals import *
import sys
 
BLACK     = (0  ,0  ,0  )
WHITE     = (255,255,255)
 
SCREEN_SIZE = [320,400]
BAR_SIZE = [20, 5]
BALL_SIZE = [15, 15]
 
class Game(object):
	def __init__(self):
		pygame.init()
		self.clock = pygame.time.Clock()
		self.screen = pygame.display.set_mode(SCREEN_SIZE)
		pygame.display.set_caption('Simple Game')
 
		self.ball_pos_x = SCREEN_SIZE[0]/
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值