tf6: autoencoder—WiFi指纹的室内定位

本文介绍了一种使用WiFi指纹进行室内定位的方法,借鉴论文《Low-effort place recognition with WiFi fingerprints using Deep Learning》。通过在室内各区域收集WiFi信号强度,构建WiFi指纹数据库,并利用TensorFlow开发自动编码器进行位置分类。UJIIndoorLoc数据集用于训练和验证模型,最终实现用户上传WiFi信息后,模型预测其位置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本帖基于论文:Low-effort place recognition with WiFi fingerprints using Deep Learning

室内定位有很多种方式,利用WiFi指纹就是是其中的一种。在室内,可以通过WiFi信号强度来确定移动设备的大致位置,参看:https://www.zhihu.com/question/20593603

使用WiFi指纹定位的简要流程

首先采集WiFi信号,这并不需要什么专业的设备,几台手机即可。Android手机上有很多检测WiFi的App,如Sensor Log。

把室内划分成网格块(对应位置),站在每个块内分别使用Sensor Log检测WiFi信号,数据越多越好。如下:

1

2

3

4

5

location1:WiFi{"BSSID":

评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MachineLP

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值