关闭

[高斯消元 矩阵的秩] 51Nod 1356 代数数的次数

189人阅读 评论(0) 收藏 举报
分类:

请教了比利
首先 2n 次项是没有问题的,比如2+3,可以构造f(x)=(x+2+3)(x+23)(x2+3)(x23)
这个不是最优解
最优解应该是构造这样一个矩阵 每一行代表一个质因子 每一列代表根式中的一项 有奇数次这个质因子的一项 那一列为1 否则为0
然后这个矩阵的线性基的大小m就是最优答案 2m

我还没有想明白 然而退役了 也就以后再深究吧

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<bitset>
#include<cassert>
using namespace std;
typedef long long ll;

#define read(x) scanf("%d",&(x))

const int maxn=200005;
const int P=1e9+7;

int vst[maxn];
int prime[maxn],num;

inline void Pre(int n){
  for (int i=2;i<=n;i++){
    if (!vst[i]) prime[++num]=i;
    for (int j=1;j<=num && (ll)i*prime[j]<=n;j++){
      vst[i*prime[j]]=1;
      if (i%prime[j]==0) break;
    }
  }
}

const int N=505;

bitset<N> B[20005];

int n,a[N];

int sx[20000],icnt;

inline int Bin(int x){
  return lower_bound(sx+1,sx+icnt+1,x)-sx;
}

int main(){
  freopen("t.in","r",stdin);
  freopen("t.out","w",stdout);
  Pre(2e5);
  read(n);
  for (int i=1;i<=n;i++){
    read(a[i]); int t=a[i];
    for (int j=1;j<=num && (ll)prime[j]*prime[j]<=a[i];j++)
      if (t%prime[j]==0){
    sx[++icnt]=prime[j];
    while (t%prime[j]==0) t/=prime[j];
      }
    if (t>1) sx[++icnt]=t;
  }
  sort(sx+1,sx+icnt+1); icnt=unique(sx+1,sx+icnt+1)-sx-1;
  for (int i=1;i<=n;i++){
    int t=a[i];
    for (int j=1;j<=num && (ll)prime[j]*prime[j]<=a[i];j++)
      if (t%prime[j]==0){
    int it=Bin(prime[j]); int c=0;
    while (t%prime[j]==0)
      c^=1,t/=prime[j];
    B[it][i]=c;
      }
    if (t>1){
      B[Bin(t)][i]=1;
    }
  }
  ll ans=1; int k=0;
  for (int i=1;i<=n;i++){
    int t=0;
    for (int j=k+1;j<=icnt;j++) if (B[j][i]) t=j;
    if (t){
      swap(B[++k],B[t]);
      (ans<<=1)%=P;
      for (int j=k+1;j<=icnt;j++)
    if (B[j][i])
      B[j]^=B[k];
    }
  }
  assert(k<=n);
  printf("%d\n",ans);
  return 0;
}
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:308749次
    • 积分:12395
    • 等级:
    • 排名:第1311名
    • 原创:969篇
    • 转载:3篇
    • 译文:0篇
    • 评论:54条
    最新评论