多项式
文章平均质量分 62
里阿奴摩西
这个作者很懒,什么都没留下…
展开
-
[多项式求逆 模板题] BZOJ 4555 [Tjoi2016&Heoi2016]求和
推导不多说了 在很久之前就写过了 观察柿子gn=∑i=1n2∗Cin∗gn−ig_n=\sum _{i=1}^n 2*C_n^i*g_{n-i} 写成卷积的形式 gnn!=∑i=1n2i!∗gn−i(n−i)!{g_n \over n!}=\sum _{i=1}^n{2\over i!}*{g_{n-i} \over (n-i)!} 那么的话 分别令 f(x)=∑i=0∞gii!xif(原创 2017-02-21 18:19:42 · 1472 阅读 · 0 评论 -
[多项式开根 模板题] BZOJ 3625 [Codeforces Round #250]小朋友和二叉树
令A(x)=∑i∈SxiA(x)=\sum _{i \in S} x^i 以及f(x)f(x)为答案的母函数 那么f(x)=A(x)∗f2(x)+1A(x)∗f2(x)−f(x)+1=0f(x)=1±1−4A(x)−−−−−−−−√2A(x)=21±1−4A(x)−−−−−−−−√f(x)=A(x)*f^2(x)+1 \\ A(x)*f^2(x)-f(x)+1=0\\f(x)={1 \pm \s原创 2017-02-21 18:31:24 · 1103 阅读 · 0 评论 -
[带标号无向连通图计数 容斥原理 多项式求逆 多项式求ln 模板题] BZOJ 3456 城市规划
可以通过容斥求出答案的表达式fi=2C2i−∑j=1i−1Cj−1i−1∗fj∗2C2i−jf_i=2^{C_i^2}-\sum_{j=1}^{i-1} C_{i-1}^{j-1}*f_j*2^{C_{i-j}^2} 其中前一部分表示i个点任意连边 后半部分枚举1所在的连通块然后容斥掉∑j=1ifj(j−1)!∗2C2i−j(i−j)!=2C2i(i−1)!\sum_{j=1}^i {f_j \o原创 2017-02-21 18:08:59 · 2653 阅读 · 0 评论 -
[矩阵树定理 拉格朗日插值] TCO14 Round 3B TreeDistance
考虑两棵树,最少需要多少步把其中一棵变成另一棵? 可以发现答案就是不同的边数。即存在于A中而不存在于B中的边 数。 相当于要求:有多少带标号无根树,只有≤ kk 条原树中没有的边? 把原树中的边设成11,不在原树中的边设成xx,跑矩阵树定理,得出 来是一个nn阶多项式。 xi(i≤k)x_i(i ≤ k)前的系数和就是答案// BEGIN CUT HERE #include<coni原创 2017-04-04 13:18:28 · 851 阅读 · 0 评论 -
[多项式] COGS 有标号的二分图计数系列
我是抄的 orzzQAQ_bipartite_one∑k=0nCkn∗2(n−k)∗k\sum_{k=0}^n C_n^k*2^{(n-k)*k} 注意这里是2(n−k)∗k2^{(n-k)*k}不是2(n−k)+k2^{(n-k)+k} 怎么卷? 2(n−k)∗k=(2√)n2(2√)k2∗(2√)(n−k)22^{(n-k)*k}={(\sqrt 2)^{n^2}\over{(\sqrt 2原创 2017-04-24 21:10:44 · 691 阅读 · 0 评论 -
[带标号DAG计数 容斥原理 多项式求逆 多项式求ln] COGS 有标号的DAG计数系列
题目链接 传送门I 传送门II 传送门III 传送门IV 题解戳这里 大致解法和思想是同这里一样的DAG1找出一个入度为00的点 那么答案为C1n∗21∗(n−1)∗fn−1C_n^1*2^{1*(n-1)}*f_{n-1} 但是一张DAG里会有多个入度为00的点会重复计数 考虑容斥 得到 fn=∑k=1n−1k−1∗Ckn∗2k∗(n−k)∗fn−kf_n=\sum_{k=1}^n -1原创 2017-02-24 02:17:20 · 1071 阅读 · 0 评论 -
[多项式求逆] 51Nod TalkingData数据科学精英夏令营挑战赛 F 驴蛋蛋与老孙与微分式
题解里给出了一种解偏微分方程得出生成函数的方法 最后应该是 H(z,x)=sinz+xcoszcosz−xsinzH(z,x)={\sin z+x \cos z \over \cos z−x\sin z} H(z)=sinzcosz=tanz=x+13x3+215x5+o(x5)H(z)={\sin z \over \cos z}=\tan z=x+{1\over 3}x^3+{2\over原创 2017-06-18 14:09:56 · 653 阅读 · 0 评论