HDU 1890(Splay树)

这个礼拜准备把Splay树补完,这道题被认为是一道Splay的水题,(然而像我这种入门级学习后还是搞了好久,毕竟算是第一次接触吧)。

感觉Splay树必须要明确的一点:该树的中序遍历就是现在的序列

这里面有一个区间翻转的操作,涉及到区间问题,Splay树的核心就是RotateTo(l-1,0),Rotate(r+1,root),就是把该区间的前一个数转到根节点,后一个数转到根节点的右节点,这是Key_Tree = ch[ch[root][1]][0]代表的就是这段区间。因为Splay树并不是线段树(非叶子节点可以代表一个区间)。Splay树的每个节点都是一个点,所以我们除了维护点的值外,我们还要维护以该点为根的子树的值(对应的也就是区间值)。

我们在原序列两端添加两个节点。

本题的关键就是找到第i小的点以后要把该段区间翻转以后删掉第i小的点(因为后面的操作和找到的点已经没有关系了)。然后delete操作怎么写?

我们假设当前要寻找原序列中的第i小的点,由于我们前i-1小的点都已经删除了,所以我们只需要找当前序列的第i小的点,然后把这个节点转到ch[root][1],然后我们找这个节点的前驱。转到该节点下方,然后删掉该节点。就可以了。(具体看代码)。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define LL long long
#define FOR(i,x,y)  for(int i = x;i < y;i ++)
#define IFOR(i,x,y) for(int i = x;i > y;i --)
#define Key_Tree ch[ch[root][1]][0]
#define MAXN 110000

using namespace std;

int id[MAXN],n,p[MAXN],pos[MAXN];
struct Num{
    int num;
    int id;
    bool operator < (const Num& rhs) const{
        if(num == rhs.num)  return id < rhs.id;
        return num < rhs.num;
    }
}st[MAXN];

struct SplayTree{
    int ch[MAXN][2],sz[MAXN],pre[MAXN],key[MAXN],root,tot;
    int flip[MAXN];

    void Rotate(int x,int kind){
        int y = pre[x];
        Push_Down(y);
        Push_Down(x);
        ch[y][!kind] = ch[x][kind];
        pre[ch[x][kind]] = y;
        if(pre[y]){
            ch[pre[y]][ch[pre[y]][1] == y] = x;
        }
        pre[x] = pre[y];
        ch[x][kind] = y;
        pre[y] = x;
        Push_Up(y);
    }

    void Splay(int x,int goal){
        Push_Down(x);
        while(pre[x] != goal){
            Push_Down(pre[pre[x]]); Push_Down(pre[x]);  Push_Down(x);
            if(pre[pre[x]] == goal){
                Rotate(x,ch[pre[x]][0] == x);
            }
            else{
                int y = pre[x];
                int kind = (ch[pre[y]][0] == y);
                if(ch[y][kind] == x){
                    Rotate(x,!kind);
                    Rotate(x,kind);
                }
                else{
                    Rotate(y,kind);
                    Rotate(x,kind);
                }
            }
        }
        Push_Up(x);
        if(!goal)   root = x;
    }

    void RotateTo(int k,int goal){
        int x = root;
        Push_Down(x);
        while(sz[ch[x][0]] != k){
            if(k < sz[ch[x][0]]){
                x = ch[x][0];
            }
            else{
                k -= (sz[ch[x][0]]+1);
                x = ch[x][1];
            }
            Push_Down(x);
        }
        Splay(x,goal);
    }


    //debug部分copy from hh
    void Treaval(int x) {
        if(x) {
            Treaval(ch[x][0]);
            printf("结点%2d:左儿子 %2d 右儿子 %2d 父结点 %2d size = %2d ,val = %2d \n",x,ch[x][0],ch[x][1],pre[x],sz[x],key[x]);
            Treaval(ch[x][1]);
        }
    }
    void debug() {printf("%d\n",root);Treaval(root);}
    //以上debug

    void NewNode(int& x,int father,int k){
        x = ++tot;
        pre[x] = father;
        key[x] = k;
        ch[x][0] = ch[x][1] = 0;
        sz[x] = 1;
        flip[x] = 0;
    }

    void Push_Up(int x){
        sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
    }

    void Push_Down(int x){
        if(flip[x]){
            flip[ch[x][0]] ^= 1;
            flip[ch[x][1]] ^= 1;
            flip[x] = 0;
            swap(ch[x][1],ch[x][0]);
        }
    }

    void Build(int& x,int l,int r,int father){
        if(l > r)   return;
        int mid = (l+r) >> 1;
        NewNode(x,father,p[mid]);
        pos[mid+1] = x;
        Build(ch[x][0],l,mid-1,x);
        Build(ch[x][1],mid+1,r,x);
        Push_Up(x);
    }

    void Init(){
        root = tot = 0;
        ch[0][1] = ch[0][0] = pre[0] = sz[0] = 0;
        NewNode(root,0,0);
        NewNode(ch[root][1],root,0);
        sz[root] = 2;
        Build(Key_Tree,0,n-1,ch[root][1]);
        Push_Up(ch[root][1]);
        Push_Up(root);
    }

    void del(){
        int x = Get_Pre(ch[root][1]);
        if(x == -1){
            pre[ch[ch[root][1]][1]] = root;
            ch[root][1] = ch[ch[root][1]][1];
        }
        else{
            Splay(x,ch[root][1]);
            pre[Key_Tree] = root;
            pre[ch[ch[root][1]][1]] = Key_Tree;
            ch[Key_Tree][1] = ch[ch[root][1]][1];
            ch[root][1] = Key_Tree;
        }
    }

    void solve(){
        FOR(i,1,n+1){
            //debug();
            Splay(1,0);
            Splay(id[i],root);
            flip[Key_Tree] ^= 1;
            if(i == 1){printf("%d",i+sz[Key_Tree]);}
            else printf(" %d",i+sz[Key_Tree]);
            del();
        }
        printf("\n");
    }

    int Get_Pre(int x){
        Push_Down(x);
        x = ch[x][0];
        while(x){
            Push_Down(x);
            while(ch[x][1]){
                x = ch[x][1];
                Push_Down(x);
            }
            return x;
        }
        return -1;
    }

    int Get_Next(int x){
        Push_Down(x);
        x = ch[x][1];
        while(x){
            Push_Down(x);
            while(ch[x][0]){
                x = ch[x][0];
                Push_Down(x);
            }
            return x;
        }
        return -1;
    }
}spt;

int main()
{
    //freopen("test.in","r",stdin);
    while(~scanf("%d",&n) && n){
        FOR(i,0,n)  {scanf("%d",&st[i].num); p[i] = st[i].num; st[i].id = i+1;}
        spt.Init();
        //spt.debug();
        sort(st,st+n);
        FOR(i,1,n+1){
            id[i] = pos[st[i-1].id];
        }
        spt.solve();
    }
    return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值