这个礼拜准备把Splay树补完,这道题被认为是一道Splay的水题,(然而像我这种入门级学习后还是搞了好久,毕竟算是第一次接触吧)。
感觉Splay树必须要明确的一点:该树的中序遍历就是现在的序列
这里面有一个区间翻转的操作,涉及到区间问题,Splay树的核心就是RotateTo(l-1,0),Rotate(r+1,root),就是把该区间的前一个数转到根节点,后一个数转到根节点的右节点,这是Key_Tree = ch[ch[root][1]][0]代表的就是这段区间。因为Splay树并不是线段树(非叶子节点可以代表一个区间)。Splay树的每个节点都是一个点,所以我们除了维护点的值外,我们还要维护以该点为根的子树的值(对应的也就是区间值)。
我们在原序列两端添加两个节点。
本题的关键就是找到第i小的点以后要把该段区间翻转以后删掉第i小的点(因为后面的操作和找到的点已经没有关系了)。然后delete操作怎么写?
我们假设当前要寻找原序列中的第i小的点,由于我们前i-1小的点都已经删除了,所以我们只需要找当前序列的第i小的点,然后把这个节点转到ch[root][1],然后我们找这个节点的前驱。转到该节点下方,然后删掉该节点。就可以了。(具体看代码)。
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <cstring>
#define LL long long
#define FOR(i,x,y) for(int i = x;i < y;i ++)
#define IFOR(i,x,y) for(int i = x;i > y;i --)
#define Key_Tree ch[ch[root][1]][0]
#define MAXN 110000
using namespace std;
int id[MAXN],n,p[MAXN],pos[MAXN];
struct Num{
int num;
int id;
bool operator < (const Num& rhs) const{
if(num == rhs.num) return id < rhs.id;
return num < rhs.num;
}
}st[MAXN];
struct SplayTree{
int ch[MAXN][2],sz[MAXN],pre[MAXN],key[MAXN],root,tot;
int flip[MAXN];
void Rotate(int x,int kind){
int y = pre[x];
Push_Down(y);
Push_Down(x);
ch[y][!kind] = ch[x][kind];
pre[ch[x][kind]] = y;
if(pre[y]){
ch[pre[y]][ch[pre[y]][1] == y] = x;
}
pre[x] = pre[y];
ch[x][kind] = y;
pre[y] = x;
Push_Up(y);
}
void Splay(int x,int goal){
Push_Down(x);
while(pre[x] != goal){
Push_Down(pre[pre[x]]); Push_Down(pre[x]); Push_Down(x);
if(pre[pre[x]] == goal){
Rotate(x,ch[pre[x]][0] == x);
}
else{
int y = pre[x];
int kind = (ch[pre[y]][0] == y);
if(ch[y][kind] == x){
Rotate(x,!kind);
Rotate(x,kind);
}
else{
Rotate(y,kind);
Rotate(x,kind);
}
}
}
Push_Up(x);
if(!goal) root = x;
}
void RotateTo(int k,int goal){
int x = root;
Push_Down(x);
while(sz[ch[x][0]] != k){
if(k < sz[ch[x][0]]){
x = ch[x][0];
}
else{
k -= (sz[ch[x][0]]+1);
x = ch[x][1];
}
Push_Down(x);
}
Splay(x,goal);
}
//debug部分copy from hh
void Treaval(int x) {
if(x) {
Treaval(ch[x][0]);
printf("结点%2d:左儿子 %2d 右儿子 %2d 父结点 %2d size = %2d ,val = %2d \n",x,ch[x][0],ch[x][1],pre[x],sz[x],key[x]);
Treaval(ch[x][1]);
}
}
void debug() {printf("%d\n",root);Treaval(root);}
//以上debug
void NewNode(int& x,int father,int k){
x = ++tot;
pre[x] = father;
key[x] = k;
ch[x][0] = ch[x][1] = 0;
sz[x] = 1;
flip[x] = 0;
}
void Push_Up(int x){
sz[x] = sz[ch[x][0]] + sz[ch[x][1]] + 1;
}
void Push_Down(int x){
if(flip[x]){
flip[ch[x][0]] ^= 1;
flip[ch[x][1]] ^= 1;
flip[x] = 0;
swap(ch[x][1],ch[x][0]);
}
}
void Build(int& x,int l,int r,int father){
if(l > r) return;
int mid = (l+r) >> 1;
NewNode(x,father,p[mid]);
pos[mid+1] = x;
Build(ch[x][0],l,mid-1,x);
Build(ch[x][1],mid+1,r,x);
Push_Up(x);
}
void Init(){
root = tot = 0;
ch[0][1] = ch[0][0] = pre[0] = sz[0] = 0;
NewNode(root,0,0);
NewNode(ch[root][1],root,0);
sz[root] = 2;
Build(Key_Tree,0,n-1,ch[root][1]);
Push_Up(ch[root][1]);
Push_Up(root);
}
void del(){
int x = Get_Pre(ch[root][1]);
if(x == -1){
pre[ch[ch[root][1]][1]] = root;
ch[root][1] = ch[ch[root][1]][1];
}
else{
Splay(x,ch[root][1]);
pre[Key_Tree] = root;
pre[ch[ch[root][1]][1]] = Key_Tree;
ch[Key_Tree][1] = ch[ch[root][1]][1];
ch[root][1] = Key_Tree;
}
}
void solve(){
FOR(i,1,n+1){
//debug();
Splay(1,0);
Splay(id[i],root);
flip[Key_Tree] ^= 1;
if(i == 1){printf("%d",i+sz[Key_Tree]);}
else printf(" %d",i+sz[Key_Tree]);
del();
}
printf("\n");
}
int Get_Pre(int x){
Push_Down(x);
x = ch[x][0];
while(x){
Push_Down(x);
while(ch[x][1]){
x = ch[x][1];
Push_Down(x);
}
return x;
}
return -1;
}
int Get_Next(int x){
Push_Down(x);
x = ch[x][1];
while(x){
Push_Down(x);
while(ch[x][0]){
x = ch[x][0];
Push_Down(x);
}
return x;
}
return -1;
}
}spt;
int main()
{
//freopen("test.in","r",stdin);
while(~scanf("%d",&n) && n){
FOR(i,0,n) {scanf("%d",&st[i].num); p[i] = st[i].num; st[i].id = i+1;}
spt.Init();
//spt.debug();
sort(st,st+n);
FOR(i,1,n+1){
id[i] = pos[st[i-1].id];
}
spt.solve();
}
return 0;
}