HDU4417(主席树)

前言:

今天刚学的主席树,附上博客:主席树
个人觉得这篇文章写的非常好。

认识:

主席树就是对于序列 1...n 的每一个前缀都构造一颗线段树来维护所要求的值。也就是说主席树实际上就是 n 棵线段树。那么为什么不会MLE?这个下面再说。

先说一个经典的问题:静态区间第 k 大?(求区间[l,r]之间第 k 大的元素。无修改)

  1. 那么对于序列的前缀,需要知道[1,l1] [1,r] 这两个区间内数的情况。
    • 在每一个前缀建立的线段树中,线段树维护的是 [p,q] 这个区间内共有多少个数,注意这里的 p,q 不是我们的初始序列的位置 ,而是初始序列的的值,(一开始看的时候这里一直搞混,理解这里的话,主席树就比较好理解了)。大多数时候数不是连续的,这个时候离散一下就好了。
    • 这里就出现了一个很好的性质:每一棵线段树维护的区间是一样的,每一个节点都是一样的(当然他们的节点值肯定不同,不然怎么玩?)。这个性质就可以保证节点维护的 sum 的加减运算不会出问题。
    • 这个时候查询 [l,r] 之间的第 k 小,那么在序列[1,l1]序列 [1,r] 这两棵线段树之间维护。假设 rt[i] 表示 [1,i] 的根节点。那么第一次查询 tree[tree[rt[r]].ls].sumtree[tree[rt[l1]].ls].sum>k 的时候,就在 [l,mid] 这棵子树里面找,否则就在 [mid+1,r] 这棵子树里面找。做相应的改变即可。
    • 这样时间复杂度很好算 o(nlogn)

    下面来说一下为什么不会 MLE ?

    1. 比较两个前缀 [1,i1] [1,i] ,发现只是多了一个 a[i] 这个数,其他的都没有变化。
    2. 这个时候如果能够在 [1,i1] 的线段树上经过小修小补就能完成该有多好啊?
    3. 实际上是可以的,如果这两个区间维护的是一棵线段树,那么这就是一个简单的区间修改的操作,但是这里我们还需要保存 [1,i1] 的线段树下来。
    4. 就一个数 a[i] ,其实 a[i] 对一棵线段树的多少个区间产生了影响? logn 个区间。这个时候只需要把改变过的 logn 的区间重新再新建一个节点,保存新的 [1,i] 线段树就可以了。此时发现绝大多数节点都实现了公用的功能。
    5. 这个时候就会得出一棵主席树的空间复杂度是 o(nlogn) 级别的,因为两棵相邻的线段树之间绝大多数节点都是公用的。也可以这样说,每次建立一棵新的线段树只相当于新增了 logn 个节点。

    结论

    时间复杂度: o(nlogn)
    空间复杂度: o(nlogn)

    下面贴一下这题的代码:(模板题)

    #include <bits/stdc++.h>
    
    using namespace std;
    
    typedef long long   LL;
    typedef vector <int>    VI;
    typedef pair <int,int>  PII;
    #define FOR(i,x,y)  for(int i = x;i < y;++ i)
    #define IFOR(i,x,y) for(int i = x;i > y;-- i)
    #define pb  push_back
    #define mp  make_pair
    #define fi  first
    #define se  second
    
    const int maxn = 100010;
    int n,m,a[maxn],b[maxn];
    map <int,int>   mat;
    
    struct Tree{
        int ls,rs,sum;
    }tree[maxn*20];
    
    int rt[maxn],tot;
    
    int build(int l,int r){
        int o = tot++;
        tree[o].sum = 0;
        if(l == r)  return o;
        int mid = (l+r)>>1;
        tree[o].ls = build(l,mid);
        tree[o].rs = build(mid+1,r);
        return o;
    }
    
    int update(int x,int l,int r,int lt,int v){
        int o = tot++;
        tree[o] = tree[lt];
        tree[o].sum += v;
        if(l == r)  return o;
        int mid = (l+r)>>1;
        if(x <= mid)    tree[o].ls = update(x,l,mid,tree[lt].ls,v);
        else    tree[o].rs = update(x,mid+1,r,tree[lt].rs,v);
        return o;
    }
    
    int query(int i,int j,int x,int l,int r){
        if(l == r)  return tree[i].sum - tree[j].sum;
        int mid = (l+r)>>1,ret = 0;
        if(x <= mid)    ret += query(tree[i].ls,tree[j].ls,x,l,mid);
        else{
            ret += tree[tree[i].ls].sum - tree[tree[j].ls].sum;
            ret += query(tree[i].rs,tree[j].rs,x,mid+1,r);
        }
        return ret;
    }
    
    void debug(int o,int l,int r){
        if(l == r)  {printf("%d:%d ",l,tree[o].sum);return;}
        int mid = (l+r) >> 1;
        debug(tree[o].ls,l,mid);
        debug(tree[o].rs,mid+1,r);
    }
    
    int main(){
        freopen("test.in","r",stdin);
        int T,tCase = 0;  scanf("%d",&T);
        while(T--){
            printf("Case %d:\n",++tCase);
            scanf("%d%d",&n,&m);
            FOR(i,1,n+1)    scanf("%d",&a[i]),b[i] = a[i];
            sort(b+1,b+n+1);
            int sz = unique(b+1,b+n+1)-b-1;
            FOR(i,1,sz+1)   mat[b[i]] = i;
            tot = 0;
            rt[0] = build(1,sz);
            FOR(i,1,n+1)    rt[i] = update(mat[a[i]],1,sz,rt[i-1],1);
            /*
            FOR(i,1,n+1){
                debug(rt[i],1,sz);   printf("\n");
            }
            */
            FOR(i,0,m){
                int l,r,h;
                scanf("%d%d%d",&l,&r,&h);
                r ++; l ++;
                int k = upper_bound(b+1,b+sz+1,h)-b-1;
                //printf("r:%d l:%d k:%d ",r,l,k);
                if(k)   printf("%d\n",query(rt[r],rt[l-1],k,1,sz));
                else    printf("0\n");
            }
        }
        return 0;
    }
    
    
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值