关闭

[leetcode] 132.Palindrome Partitioning II

标签: 动态规划
182人阅读 评论(0) 收藏 举报
分类:

题目:
Given a string s, partition s such that every substring of the partition is a palindrome.

Return the minimum cuts needed for a palindrome partitioning of s.

For example, given s = “aab”,
Return 1 since the palindrome partitioning [“aa”,”b”] could be produced using 1 cut.
题意:
给定一个字符串,对s的一个划分的意思是s的每一个部分都是一个回文串。
找出最小的划分。
思路:
对于一个字符串,对于从0到j的一个子串。可以对该子串进行划分,分为两个部分,0~k,k+1~j,或者不划分就是0~j。判断k+1 ~ j是不是回文串,这时候的判断需要依据之前保存的信息,需要判断s[k+1] 是否等于 s[j],并且根据子串k+2 ~j - 1是不是回文串如果两个条件都满足的话,说明k+1~j就是回文串,这部分不需要再进行划分,所以就是前面0~k的划分加上1。这道题只需要根据后面一部分是回文串进行计算,为什么可以忽略后面一部分不是回文串的情况呢,考虑后面不是回文串,那么我们可以将后者划分为几个回文串k+1~m1,m1+1~m2,..mk~j,那么一定可以把k+1~mk-1并到0~mk-1中。根算法导论上钢条切分是一个道理,因为回文串放在前面部分和后面部分没有本质上的区别。
代码如下:

class Solution {
public:
    int minCut(string s) {
        if(s.length() <= 1)return 0;
        vector<vector<bool>>DP(s.length(), vector<bool>(s.length(), false));
        vector<int> cuts;
        for(int i = 0; i < s.length() + 1; i++)
          cuts.push_back(i - 1);
        for(int j = 0; j < s.length(); j++){ 
            for(int i = j; i >= 0; i--) {
                if((s[i] == s[j]) && (j - i <= 2 || DP[i+1][j-1] == true)) {
                    DP[i][j] = true;
                    cuts[j + 1] = min(cuts[j + 1], cuts[i] + 1);
                }
            }
        }
        return cuts[s.length()];
    }
};
0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:51590次
    • 积分:2793
    • 等级:
    • 排名:第12804名
    • 原创:239篇
    • 转载:0篇
    • 译文:0篇
    • 评论:5条
    文章分类
    最新评论