数值问题专题小结:自适应辛普森算法求定积分

本文介绍了自适应辛普森法作为数值积分的一种高效方法,相较于三点辛普森公式,它能提供更高的精度。自适应辛普森法通过设置精度阈值并根据函数变化情况动态划分区间,确保积分的精确估算。当区间的积分近似值满足特定条件时,算法返回结果,否则继续递归细化区间。这种方法在无法获得原函数的情况下特别有用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

三点辛普森公式




该公式要求f(x)必须是一个全局函数,用它可以近似的来求解一个定积分,但精度不够高。因此衍生出一个重要的“变种”,称为“自适应辛普森法”。

自适应辛普森法

(1)概述:自适应辛普森法(Adaptive Simpson's Rule)是一种数值积分方法,适用于无法求出原函数时的定积分。比直接用辛普森公式的精度更高,而且效率也可观。

(2)原理:该算法还是基于三点辛普森公式进行计算,不过需要设置一个精度eps,然后可以根据情况递归的划分区间:容易近似的地方少划分,不容易近似的地方多划分。近似程度利用如下公式来判断:

其中的三个S值是在对应的区间中利用“三点辛普森”公式计算出来的值。c是区间[a,b]的中点,ε就是上述的eps。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值