关闭

硬币问题

标签: 硬币问题动态规划经典
60人阅读 评论(0) 收藏 举报
分类:

硬币问题:有n中硬币,面值分辨为 v1,v2,v3...vn.每种都有无限多个。给定非负整数S,可以选用多少个硬币使得面值之和为S?输出硬币数目的最大值和最小值。

问题分析:固定终点的最长路问题。用图来建模,如果s大于vi,则s到vi有一条边。

  初步代码:

     d(i)表示从结点i到0的最长路

int dp(int s){

int & ans=d[s];

if(ans>=0)  return ans;

ans =0;

for(int i=1;i<=n;i++) if(s>=0v{i}) ans=max(ans,dp(s-v[i])+1);

return ans;

}


初步代码存在着一个致命的错误,s不一定能真的到达0.所以我们可以将ans初始化的值变为-1,若没计算过则先赋值为-INF,所以当s无法到达0的路线,我们直接加上一个负无穷小的数,默认为放弃。


最终代码为:


int dp(int s){

int & ans=d[s];

if(ans!=-1) return ans;

ans=-INF;

for(int i=1;i<=n;i++) if(s>=v[i])  ans=max(ans,dp(s-v[i])+1);

return ans;   //无法到达这返回一个很小的值,相当于放弃

}

0
0

查看评论
* 以上用户言论只代表其个人观点,不代表CSDN网站的观点或立场
    个人资料
    • 访问:3900次
    • 积分:463
    • 等级:
    • 排名:千里之外
    • 原创:44篇
    • 转载:6篇
    • 译文:0篇
    • 评论:0条
    文章分类